吲哚降解菌及其除臭功能研究

吲哚降解菌及其除臭功能研究

论文摘要

吲哚类化合物引起的环境污染日益严重。在动物养殖中,来源于L-色氨酸无氧代谢产生的粪臭素(3-甲基吲哚,3MI)等吲哚类化合物是养殖场臭气的主要成分,也是造成养殖场及其周边环境恶化的主要因素。如何有效治理吲哚污染是养殖业可持续发展所面临的难题。本研究使用富集培养法从家禽粪便中分离出能够利3MI和吲哚的可培养细菌,在进行生化和分子鉴定的基础上研究了其生化特性、培养条件、除臭功能及其机理,为吲哚生物除臭饲料添加剂的研制奠定基础。本研究分离获得能够高效降解粪臭素的细菌2株,通过使用Biolog GEN III MicroPlate评估所分离菌株的生化特征并依据16S rDNA基因测序结果,将其鉴定为不动杆菌NTA1-2A(A.Toweneri)和不动杆菌TAT1-6A(A.guillouiae)。通过单因素实验确定了降解粪臭素(3MI)、吲哚的最佳温度和pH值,评估对粪臭素和吲哚的初始浓度的耐受性以及初始浓度对降解效果的影响。结果表明,菌株NTA1-2A和TAT1-6A降解3MI的最佳温度和pH分别为31℃和6,两菌株可有效降解初始浓度范围为65200mg/L的3MI;当初始浓度小于200mg/L时,两株菌在6天内的降解效率均大于85%;NTA1-2A和TAT1-6A菌株培养上清对初始浓度65mg/L 3MI的6天降解率分别为71.46%和60.71%;菌株NTA1-2A和TAT1-6A在8天内对家禽粪便中的3MI降解率分别达到84.32%和81.39%;两个菌株可降解初始浓度范围在58.58-300mg/L之间的吲哚,当吲哚初始浓度小于300 mg/L,6天内吲哚降解率为66.36%(NTA1-2A),94.87%(TAT1-6A)和96.00%(混菌);NTA1-2A和TAT1-6A菌株培养上清可完全降解初始浓度为120mg/L的吲哚;NTA1-2A和TAT1-6A及其混合菌株用于发酵家禽粪便在8天内分别降解粪便中78.67%、83.28%和83.70%的吲哚。采用LC-MS/MS对菌株发酵液进行代谢组学分析,探讨两个菌株对粪臭素和吲哚的代谢机理。结果发现,两个菌株均降解3MI生成代谢物亮氨酸(C6H13NO2)和正缬氨酸(C5H11NO2),而TAT1-6A还可代谢3MI生成亚硝基吡咯烷(C4H8N2O)。NTA1-2A降解吲哚生成吲哚-5-甲腈3-苯甲酰基(C16H10N2O)、二甲基亚砜(C2H6OS)、脱氧鸟苷(C10H13N5O4)、亮氨酸(C6H13NO2)和N-亚硝基吡咯烷,而NTA1-2A和TAT1-6A代谢吲哚也生成相同的代谢产物——神经碱(C5H133 NO)和正缬氨酸(C5H111 N O2)。该两株菌产生的3MI和吲哚的降解代谢物不同于其他报道,表明不同微生物菌株对吲哚类化合物的代谢具有多样性。综上,本研究筛选获得的菌株A.toweneri NTA1-2A和A.guillouiae TAT1-6A具有较强的降解吲哚类化合物的能力,在控制畜牧养殖业中恶臭气味方面有较大应用潜力,也有望应用于化工等行业吲哚类及含氮杂环污染物的治理。

论文目录

  • 摘要
  • abstract
  • LIST OF ACRONYMS
  • CHAPTER1 INTRODUCTION
  •   1.1 GENERAL INTRODUCTION
  • CHAPTER2 LITERATURE REVIEW
  •   2.1 STUDY BACKGROUND
  •   2.2 FORMATION OF INDOLE AND SKATOLE
  •   2.3 3-METHYLINDOLE(SKATOLE)
  •     2.3.1 Effects of3-methylindole
  •     2.3.2 Bacterial degradation of3-methylindole
  •   2.4 MICROBIAL DEGRADATION OF INDOLE
  •     2.4.1 Anaerobic bacteria degradation of indole
  •     2.4.2 Aerobic degradation of indole
  •     2.4.3 Bacterial cometabolism of indole
  •     2.4.4 Fungal degradation of indole
  •   2.5 THE CURRENT STUDY
  •     2.5.1 Aims and objectives of current study
  •     2.5.2 Purpose and significance of the study
  • CHAPTER3 ISOLATION AND MOLECULAR CHARACTERIZATION OF3-METHYLINDOLEDEGRADING BACTERIA FROM POULTRY MANURE
  •   3.1 INTRODUCTION
  •   3.2 MATERIALS AND METHODS
  •     3.2.1 Bacteria growth medium
  •     3.2.2 Identification of the selected strains NTA1-2A and TAT-6A
  •     3.2.3 Assessing3MI degradation
  •     3.2.4 Single factors affecting3MI degradation
  •     3.2.5 Effect of3MI initial concentrations
  •     3.2.6 Enzyme activity test
  •     3.2.7 Poultry manure fermentation experiment
  •     3.2.8 Sample preparation for HPLC analysis
  •   3.3 STATISTICAL ANALYSIS
  •   3.4 RESULTS
  •     3.4.1 Identification of strains NTA1-2A and TAT1-6A
  •     3.4.2 Effect of temperature and pH on growth and3MI Degradation
  •     3.4.3 3MI degradation at different initial concentrations
  •     3.4.4 3MI degradation efficiency of supernatant
  •     3.4.5 3MI removal from poultry manure
  •   3.5 DISCUSSION
  •   3.6 CONCLUSION
  • CHAPTER4 DEGRADATION OF INDOLE USING A.TOWENERI NTA1-2A AND A.GUILLOUIAE TAT1-6A BACTERIAL STRAINS
  •   4.1 INTRODUCTION
  •   4.2 MATERIALS AND METHODS
  •     4.2.1 Source of microorganisms
  •     4.2.2 Medium conditions and bacteria growth
  •     4.2.3 Indole degradation by NTA1-2A and TAT1-6A
  •     4.2.4 Factors affecting Indole degradation
  •     4.2.5 Enzyme activity test
  •     4.2.6 Poultry manure fermentation
  •     4.2.7 Sample preparation for HPLC analysis
  •   4.3 STATISTICAL ANALYSIS
  •   4.4 RESULTS
  •     4.4.1 Indole degradation efficiency
  •     4.4.2 Indole degradation at different initial concentrations
  •     4.4.3 Factors affecting Indole degradation
  •     4.4.4 Effect of indole on bacterial growth
  •     4.4.5 Indole degradation efficiency of supernatant
  •     4.4.6 Indole removal from poultry manure
  •   4.5 DISCUSSION
  •   4.6 CONCLUSION
  • CHAPTER5 ANALYSIS OF3-METHYLINDOLE AND INDOLE DEGRADATIONMETABOLITES
  •   5.1 INTRODUCTION
  •     5.1.1 3-methylindole degradation metabolites
  •     5.1.2 Indole degradation metabolites
  •   5.2 MATERIALS AND METHODS
  •     5.2.1 Source of microorganisms and Medium conditions
  •     5.2.2 Sample preparation and LC– MS/MS analysis
  •     5.2.3 Data analysis
  •     5.2.4 Protein identification by SDS-PAGE
  •   5.3 RESULTS
  •     5.3.1 3-methylindole degradation metabolites
  •     5.3.2 Indole degradation metabolites
  •     5.3.3 Metabolic enzymes
  •   5.4 DISCUSSION
  •   5.5 CONCLUSIONS
  • CHAPTER6 OVERALL CONCLUSIONS AND RECOMMENDATIONS
  •   6.1 CONCLUSIONS
  •   6.2 RECOMMENDATIONS
  • CHAPTER7 REFERENCES
  • ACKNOWLEDGMENTS
  • AUTHOR RESUME
  • APPENDICES
  • 文章来源

    类型: 博士论文

    作者: Tesso Tujuba Ayele

    导师: 刘国华

    关键词: 不动杆菌,生物降解,粪臭素,吲哚,机制,发酵,粪便

    来源: 中国农业科学院

    年度: 2019

    分类: 基础科学,工程科技Ⅰ辑

    专业: 生物学,环境科学与资源利用,环境科学与资源利用

    单位: 中国农业科学院

    分类号: X512;X172

    总页数: 107

    文件大小: 6238K

    下载量: 171

    相关论文文献

    • [1].Synthesis and biological evaluation of indole-3-carboxamide derivatives as antioxidant agents[J]. Chinese Chemical Letters 2019(12)
    • [2].An efficient synthesis of novel chromeno[3',4':5,6]pyrano[2,3-b]indole derivatives[J]. Chinese Chemical Letters 2013(03)
    • [3].Luminescent cyclometalated iridium(Ⅲ) dipyridoquinoxaline indole complexes as biological probes[J]. Science China(Chemistry) 2010(10)
    • [4].Design,synthesis and biological evaluation of indole derivatives as novel inhibitors targeting B-Raf kinase[J]. Chinese Chemical Letters 2014(02)
    • [5].Two new indole derivatives as anion receptors for detecting fluoride ion[J]. Chinese Chemical Letters 2013(11)
    • [6].Low-Frequency Vibrations of Indole Derivatives by Terahertz Time-Domain Spectroscopy[J]. Journal of Electronic Science and Technology 2016(04)
    • [7].Cytotoxic and antibacterial polyketide-indole hybrids synthesized from indole-3-carbinol by Daldinia eschscholzii[J]. Acta Pharmaceutica Sinica B 2019(02)
    • [8].Gallium trichloride-catalyzed conjugate addition of indole and pyrrole to α,β-unsaturated ketones in aqueous media[J]. Chinese Chemical Letters 2009(06)
    • [9].Synthesis and in vitro Anti-hepatitis B Virus Activity of Some Ethyl 5-Hydroxy-4-substituted Aminomethyl-2-sulfinylmethyl-1H-indole-3-carboxylates[J]. Chemical Research in Chinese Universities 2010(02)
    • [10].Selective Carbon Dioxide Capture in Antifouling Indole-based Microporous Organic Polymers[J]. Chinese Journal of Polymer Science 2020(02)
    • [11].Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities[J]. Chinese Chemical Letters 2015(06)
    • [12].Synthesis and Crystal Structure of (Z)-N-(2-(diethylamino)ethyl)-7-(5-fluoro-2-oxoindolin-3-ylidene)-2-methyl-4,5,6,7-tetrahydro-1H- indole-3-carboxamide Methanol Solvate[J]. 结构化学 2013(07)
    • [13].One-step co-electrodeposition of graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) film and its electrochemical studies of indole-3-acetic acid[J]. Chinese Chemical Letters 2014(04)
    • [14].Prenylated indole alkaloids from the marine-derived fungus Paecilomyces variotii[J]. Chinese Chemical Letters 2015(03)
    • [15].5,10-dimethylene-5,10-dihydroindolo[6,5-f]indole及其聚合物的量子化学研究[J]. 西南大学学报(自然科学版) 2010(03)
    • [16].Total synthesis of glypetelotine[J]. Chinese Chemical Letters 2009(06)
    • [17].Identification and Analysis of Components of Glucosinolates in Succulent Roots and Leaves of Fruity Radish (Raphanus sativas L.)[J]. Asian Agricultural Research 2018(04)
    • [18].Recent progress in organocatalytic asymmetric total syntheses of complex indole alkaloids[J]. National Science Review 2017(03)
    • [19].Synthesis and Crystal Structure of (2-Iodo-5-nitrophenyl)-[1-(1-methylazepan-3-yl)-1H-indol-3-yl]methanone[J]. 结构化学 2013(07)
    • [20].Biodegradation of indole by a newly isolated Cupriavidus sp. SHE[J]. Journal of Environmental Sciences 2015(08)
    • [21].Synthesis and Crystal Structure of Methyl 3-(5-Bromo-1-ethyl-1H-indole-3-carbonyl)aminopropionate[J]. 结构化学 2011(07)
    • [22].Synthesis and Crystal Structure of 3-(1-Ethyl-1H-indole-3-carbonyl)aminopropionic Acid[J]. 结构化学 2010(09)
    • [23].Direct C–H amination for indole synthesis from N-Ts-2-Styrylaniline derivatives catalyzed by copper salt[J]. Chinese Chemical Letters 2015(08)
    • [24].Two new bromoindoles from red alga Laurencia similis[J]. Chinese Chemical Letters 2009(04)
    • [25].Selective hydrogenation of unprotected indole to indoline over N-doped carbon supported palladium catalyst[J]. Chinese Chemical Letters 2015(03)
    • [26].Catalytic conjugate addition of indole toα,β-unsaturated ketones by Co(ClO_4)-2·6H_2O/bis-Schiff base complexes[J]. Chinese Chemical Letters 2012(05)
    • [27].Synthesis of Fischer indole derivatives using carboxyl-functionalized ionic liquid as an efficient and recyclable catalyst[J]. Chinese Chemical Letters 2009(03)
    • [28].Endogenous nitric oxide and hydrogen peroxide detection in indole-3-butyric acid-induced adventitious root formation in Camellia sinensis[J]. Journal of Integrative Agriculture 2018(10)
    • [29].Alkaloid constituents from the fruits of Flueggea virosa[J]. Chinese Journal of Natural Medicines 2020(05)
    • [30].Synthesis and anti-tumor activity evaluation of novel podophyllotoxin derivatives[J]. Chinese Chemical Letters 2013(01)

    标签:;  ;  ;  ;  ;  ;  ;  

    吲哚降解菌及其除臭功能研究
    下载Doc文档

    猜你喜欢