论文摘要
土壤重金属污染问题一直备受关注,利用高光谱遥感对其进行研究取得了大量的成果,主要集中在利用土壤光谱的导数变换、连续统去除等常规方法预测土壤重金属含量上。土壤光谱数据与非线性非平稳的机电信号、医学信号等具有一定的相似性。通过希尔伯特黄变换(Hilbert-Huang transform, HHT),对土壤铅(Pb)污染光谱进行频率域分析,实现土壤Pb污染光谱的HHT鉴别,并建立土壤Pb含量预测模型。首先,进行土壤Pb污染实验,采集土壤Pb污染样品的光谱、含水率及有机质含量;其次,通过土壤Pb污染样品光谱的HHT时频分析和第二个本征模函数(intrinsic mode function, IMF)分量(IMF2)瞬时频率的二阶导数识别土壤Pb污染的特征波段;最后,选择合适的频率域参数、土壤光谱一阶导数、土壤有机质含量及土壤含水率作为参数,利用箱形图、聚类分析、偏最小二乘法建立土壤Pb含量预测模型。研究结果表明:土壤Pb污染的HHT时频分析图可以鉴别土壤Pb污染光谱,未受污染的土壤光谱HHT时频分析图在波段序列为250~430之间没有异常信号, Pb污染土壤的光谱HHT时频分析图在波段序列为250~430之间存在多个异常信号,并且随着浓度的升高,异常信号分布范围越来越广,当污染浓度达到800μg·g-1时,土壤样品的光谱信号在波段序列为270处、频率为0.3 Hz之前出现了较强的异常信号;土壤Pb污染光谱经验模态分解(empirical mode decomposition, EMD)处理后,得到的未受污染的土壤光谱IMF2的瞬时频率的二阶导数的突变非常微弱,而Pb污染的土壤光谱IMF2的瞬时频率的二阶导数存在明显的突变点,根据突变点及土壤Pb污染光谱的IMF2的瞬时频率的二阶导数识别的土壤Pb污染光谱的特征波段区间为2 150~2 300 nm;利用不同浓度Pb污染下土壤光谱Hilbert能量谱峰值、 EMD能量熵、一阶导数、有机质和含水率,通过箱形图去除了六组异常样品,然后利用聚类分析的方法将去除异常样品后的土壤Pb污染样品分为两类,最后将Hilbert能量谱峰值、 EMD能量熵、 2 134 nm波段一阶导数、 790 nm波段一阶导数、 1 276 nm波段一阶导数、 2 482 nm波段一阶导数、有机质和含水率作为参数建立两类数据的BC-PLSR(boxplot cluster-partial least squares regression)模型预测土壤中Pb含量,经验证模型精度较高,相关系数分别为0.88和0.99。
论文目录
文章来源
类型: 期刊论文
作者: 付萍杰,杨可明,程龙,王敏
关键词: 土壤污染光谱,分析,瞬时频率,模型
来源: 光谱学与光谱分析 2019年05期
年度: 2019
分类: 基础科学,工程科技Ⅰ辑
专业: 环境科学与资源利用
单位: 中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,中国矿业大学(北京)地球科学与测绘工程学院,华北理工大学
基金: 国家自然科学基金项目(41271436),煤炭资源与安全开采国家重点实验室2017年开放基金项目(SKLCRSM17KFA09,SKLCRSM17KFB04)资助
分类号: X87;X53
页码: 1543-1550
总页数: 8
文件大小: 808K
下载量: 159