基于自适应多态融合蚁群算法的无人机航迹规划

基于自适应多态融合蚁群算法的无人机航迹规划

论文摘要

为解决传统航迹规划最短路径算法易陷入局部最优及复杂地形情况下的无人机航迹规划问题,提出了一种基于自适应多态融合蚁群算法的航迹规划方法。通过对航迹规划问题进行描述,建立数学模型,将自适应和蚁群算法相结合,与多态蚁群形成了全局、局部并行搜索模式,以提高算法寻找全局最优值的能力;提出自适应并行策略和自适应信息更新策略,以提升其全局搜寻能力。仿真结果表明,自适应多态融合蚁群算法较传统蚁群算法和多态蚁群算法具备更好的性能,能有效地提高搜索路径的长度和收敛速度,从而避免在求解过程中陷入局部最优,因此在求解最优航迹规划问题上有很好的应用前景。

论文目录

  • 1 蚁群算法基本原理
  • 2 自适应多态融合蚁群算法路径规划
  •   2.1 多态蚁群算法
  •   2.2 自适应多态融合蚁群算法
  • 3 实验结果和分析
  • 4 结 语
  • 文章来源

    类型: 期刊论文

    作者: 甄然,张春悦,矫阳,吴学礼

    关键词: 计算机仿真,无人机,航迹规划,多态蚁群,自适应并行策略

    来源: 河北科技大学学报 2019年06期

    年度: 2019

    分类: 工程科技Ⅰ辑,工程科技Ⅱ辑,信息科技

    专业: 航空航天科学与工程,自动化技术

    单位: 河北科技大学电气工程学院,南京理工大学自动化学院,河北省生产过程自动化工程技术研究中心

    基金: 国防基础科研计划项目

    分类号: V279;TP18

    页码: 526-532

    总页数: 7

    文件大小: 2805K

    下载量: 418

    相关论文文献

    • [1].算法:一种新的权力形态[J]. 治理现代化研究 2020(01)
    • [2].算法决策规制——以算法“解释权”为中心[J]. 现代法学 2020(01)
    • [3].面向宏观基本图的多模式交通路网分区算法[J]. 工业工程 2020(01)
    • [4].算法中的道德物化及问题反思[J]. 大连理工大学学报(社会科学版) 2020(01)
    • [5].算法解释请求权及其权利范畴研究[J]. 甘肃政法学院学报 2020(01)
    • [6].算法新闻的公共性建构研究——基于行动者网络理论的视角[J]. 人民论坛·学术前沿 2020(01)
    • [7].算法的法律性质:言论、商业秘密还是正当程序?[J]. 比较法研究 2020(02)
    • [8].关键词批评视野中的算法文化及其阈限性[J]. 学习与实践 2020(02)
    • [9].掌控还是被掌控——大数据时代有关算法分发的忧患与反思[J]. 新媒体研究 2020(04)
    • [10].美国算法治理政策与实施进路[J]. 环球法律评论 2020(03)
    • [11].算法解释权:科技与法律的双重视角[J]. 苏州大学学报(哲学社会科学版) 2020(02)
    • [12].大数据算法决策的问责与对策研究[J]. 现代情报 2020(06)
    • [13].大数据时代算法歧视的风险防控和法律规制[J]. 河南牧业经济学院学报 2020(02)
    • [14].风险防范下算法的监管路径研究[J]. 审计观察 2019(01)
    • [15].模糊的算法伦理水平——基于传媒业269名算法工程师的实证研究[J]. 新闻大学 2020(05)
    • [16].算法推荐新闻对用户的影响及对策[J]. 新媒体研究 2020(10)
    • [17].如何加强对算法的治理[J]. 国家治理 2020(27)
    • [18].“后真相”背后的算法权力及其公法规制路径[J]. 行政法学研究 2020(04)
    • [19].算法规制的谱系[J]. 中国法学 2020(03)
    • [20].论算法排他权:破除算法偏见的路径选择[J]. 政治与法律 2020(08)
    • [21].政务算法与公共价值:内涵、意义与问题[J]. 国家治理 2020(32)
    • [22].算法的法律规制研究[J]. 上海商业 2020(09)
    • [23].蚁群算法在文字识别中的应用研究[J]. 信息与电脑(理论版) 2019(22)
    • [24].大数据聚类算法研究[J]. 无线互联科技 2018(04)
    • [25].RSA算法的改进研究[J]. 计算机与网络 2018(14)
    • [26].智能时代的新内容革命[J]. 国际新闻界 2018(06)
    • [27].改进的负载均衡RSA算法[J]. 电脑知识与技术 2018(25)
    • [28].基于深度学习的视觉跟踪算法研究综述[J]. 计算机科学 2017(S1)
    • [29].大数据算法的歧视本质[J]. 自然辩证法研究 2017(05)
    • [30].深度学习算法在智能协作机器人方面的应用[J]. 中国新通信 2017(21)

    标签:;  ;  ;  ;  ;  

    基于自适应多态融合蚁群算法的无人机航迹规划
    下载Doc文档

    猜你喜欢