导读:本文包含了径向插值论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:插值,函数,矩阵,误差,方程,测温,算法。
径向插值论文文献综述
汤凌志,阳小华,刘紫静,尹陈艳[1](2019)在《基于径向基函数插值法的辐射场重构研究初探》一文中研究指出目前,我国有许多早期核设施面临退役,辐射场的重构技术研究对于辐射防护具有重要意义。本文结合我国早期核设施退役工程的特点,介绍和探讨了基于径向基函数插值方法对退役核设施进行辐射场重构的研究现状和展望。(本文来源于《价值工程》期刊2019年32期)
靳晨晖,王刚,陈鑫,周豪[2](2019)在《非结构嵌套网格中的一种改进型径向基函数插值方法》一文中研究指出非结构混合网格拓扑关系相对复杂,在嵌套边界区域进行流场信息插值传递容易有精度的损失。利用已知的解析函数作为插值样本,对线性插值(LINE)、距离倒数权重插值(WA)、逆二次径向基函数插值(IQ)、Wendland’s C2径向基函数插值四种方法的精度进行对比,筛选出精度较高的C2径向基函数;提出一种改进的C2径向基函数插值方法,通过调整径向基函数的作用半径来控制插值矩阵条件数,进而消除使用径向基函数插值在嵌套边界区域出现的数值奇性问题;选用MD30P/30N多段翼与叁维AEDC典型外挂物分离模型对该插值方法进行验证。结果表明:改进后的径向基函数插值方法能够有效消除嵌套边界区域数值奇性,同时计算收敛速率更快,插值精度更高。(本文来源于《航空工程进展》期刊2019年05期)
董有福,孟顺时,和娴[3](2019)在《DEM径向基插值搜索方式优选分析》一文中研究指出针对径向基函数插值算法中搜索参数优化选择问题,基于3种不同地形样区离散点数据,使用中误差度量指标,研究搜索点数与搜索方向对DEM插值精度的影响。实验结果表明:平原样区和丘陵样区适宜采用自然叁次样条曲面函数和薄板样条曲面函数,搜索点数上下限值控制在10~21之间(自然叁次样条曲面函数在平原样区上限值以18为佳),搜索方向对插值精度影响不显着;山地样区适宜采用多重二次曲面函数插值,搜索点数上下限值设置为16~21,应用四方向45°旋转搜索。该研究可消除径向基插值搜索方式参数选择的随意性,为不同地貌类型区DEM构建提供参考。(本文来源于《人民长江》期刊2019年10期)
董晨龙,周新志,白兴都,张若彬[4](2019)在《基于Reflected-Sigmoid径向基函数插值的温度场重建算法》一文中研究指出声学法测温在特殊的温度场环境中有良好的应用,主要是利用有限的超声波传播路径上的飞行时间重构出连续分布的温度场.现有的温度场重建算法中最小二乘法是最常用的方法,但其重建后的温度场会出现边缘信息缺失的现象.针对这一问题,提出在最小二乘法确定温度矩阵的基础上,结合Reflected-Sigmoid函数进行插值,实现了二维平面温度场的无缺失重建.通过两种典型的单峰温度场模型的重建结果及误差分析表明,在补全温度场边缘的条件下,单峰对称温度场的均方根百分误差在1.6%,单峰偏斜温度场的均方根百分误差在3.5%,取得了很好的重建效果.(本文来源于《四川大学学报(自然科学版)》期刊2019年05期)
周智勇,肖玮,田龙,胡培[5](2019)在《基于免疫原理的径向基神经网络品位插值研究》一文中研究指出针对地质统计学方法的应用缺陷,基于径向基函数神经网络(RBF网络),结合免疫算法,开展矿石品位插值研究。利用RBF网络对样本数据进行分类及训练,通过免疫算法进行数据聚类分析,确定RBF网络的隐含层节点数、径向基函数中心向量及其宽度等参数。在此基础上,选取某典型矿山品位数据进行插值计算,将插值结果与品位真实值及克立格插值进行比较分析。研究结果表明:所给出的插值模型计算效率高,算法可以覆盖更多的训练数据,全局寻优能力强;插值结果具有较高的精度。当矿床无法满足地质统计学使用条件时,可考虑采用神经网络方法对矿石品位进行估值计算。(本文来源于《矿业研究与开发》期刊2019年04期)
李春景,胡静,唐枝[6](2019)在《基于层次特征的自适应径向基插值图像放大的保真指标》一文中研究指出图像作为一种重要的信息载体,在生活中不可或缺,如何最大程度地保留和获取图像中的信息自然也成了人们所关心的话题。近年来,径向基函数(RBF)插值成为解决散乱数据插值的一种新的有效方法。径向基函数的图像放大过程中,不同参数取值对图像的放大具有非常大的影响,构造适当的保真指标对图像放大质量的评判和参数取值的研究尤为关键。文中主要建立了基于图像的层次特征和分块矩阵的径向基函数插值的图像放大的保真指标,它由全局失真度和边缘失真度两部分组成,实验结果表明了保真指标定义的有效性,在此基础上研究了MQ、逆MQ,以及Gauss径向基函数参数与图像纹理放大机制的关联程度。(本文来源于《计算机科学》期刊2019年04期)
张棚[7](2019)在《径向基函数插值及其在浅水波方程中的应用—误差估计及算法测试》一文中研究指出径向基函数方法是求解偏微分方程的有力工具。文中选择MQ-拟插值方法,再结合浅水波方程解的性质,因此重点研究方向是MQ-拟插值的误差估计式和算法测试,主要研究内容分为两部分。首先介绍MQ-拟插值.方法和有限差分方法分别解Korteweg-de Vries方程,.分析精确解与有限差分数值解的误差,以及有限差分解与MQ-拟插值的误差,从而推导出MQ-拟插值法解Korteweg-de Vries方程的误差估计式,得到当初值条件u0满足C~k(k≥5)时,误差为O((1+△t)h~(min{2,l—1}));随后给出数值例子,通过图表表明文中构造的误差差分析方法的可行性和有效性,主要以Korteweg-de Vri.es方程为例。其次介绍有限差分法和MQ-拟插值方法分别解Camassa-Holm(C-H)方程和Degasperis-Procisi(D-P)方程,因此先估计精确解与此方法得到的数值解之间的误差,再估计有限差分法的近似解与MQ-拟插值的近似解之间的误.差,得出插值误差:当Camassa-Holm方程的初值条件u0满足C~k(k ≥ 4)时,误差为O(h~(min{2,l-1}))+O(Δth~(min{2,l-1}));当 D-P方程的初值条件u0如满足C~k(k≥ 3)时,在短时间内,误差达到O(h~(min{2,l-1}))+O(Δth~2)。(本文来源于《电子科技大学》期刊2019-03-22)
李佩哲,谢亮,喻伯平,张强,刘洪[8](2019)在《基于径向基函数的结冰收集率计算的两级插值方法》一文中研究指出为提高飞机结冰数值模拟中粒子轨迹计算的效率,基于拉格朗日方法,提出了两级插值方法。第一级插值为收集率插值,根据水滴轨迹在壁面撞击位置的收集率,采用径向基函数插值计算所有网格的收集率;第二级插值为轨迹插值,把水滴从远场运动撞击到壁面过程分为两个部分,在距机翼较远位置计算少量水滴轨迹,在壁面附近位置加密计算大量水滴轨迹。采用收集率插值时,由于结冰累积,线性插值或者高阶样条插值方法在遮蔽区内插值不准确,引入径向基函数插值来解决该问题。给出的算例表明,两级插值方法能够极大地提高拉格朗日法计算收集率的效率,径向基函数插值能够避免遮蔽区内插值不准确的问题。(本文来源于《科学技术与工程》期刊2019年07期)
冯佰威,冯梅,常海超,张丽妹[9](2019)在《基于径向基插值的曲面变形方法在船型多目标优化中的应用》一文中研究指出在船体型线优化中,精确有效的船体曲面表达和变形技术在优化中起着重要的作用,文中研究基于径向基插值的曲面变形方法在船型多目标优化中的应用,采用基于径向基插值技术的船体曲面变形方法,以DTMB5415船型为研究对象,结合计算流体力学计算工具和多目标粒子群算法,以兴波阻力最小为优化目标,完成了不同弗劳德数(Fr)下的船舶阻力性能优化.在优化结果中选择3条典型船型进行分析:Fr为0.41时方案1较优,兴波阻力减小了18.83%;Fr为0.22时方案3较优,兴波阻力减小了49.66%;Fr为0.28时方案2为折中方案,兴波阻力减小了30.23%.优化结果表明,基于径向基插值技术的船体曲面变形方法可有效产生光顺的船体型线.(本文来源于《华南理工大学学报(自然科学版)》期刊2019年02期)
陈文兴,闫丽萍,崔英,李苗[10](2019)在《径向基网络的非线性插值与3D点云曲面重构技术》一文中研究指出研究了径向基网络插值算法与3D曲面重构方法,分别从研究价值、插值理论、仿真等等方面做了详细分析,研究结果表明RBF-Network在逼近一维复杂的非线性函数时具有收敛速度快、精度高、泛化能力更强等优点.但在3D重构方面,基于RBF的单位分解法重构效果更好.(本文来源于《数学的实践与认识》期刊2019年01期)
径向插值论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
非结构混合网格拓扑关系相对复杂,在嵌套边界区域进行流场信息插值传递容易有精度的损失。利用已知的解析函数作为插值样本,对线性插值(LINE)、距离倒数权重插值(WA)、逆二次径向基函数插值(IQ)、Wendland’s C2径向基函数插值四种方法的精度进行对比,筛选出精度较高的C2径向基函数;提出一种改进的C2径向基函数插值方法,通过调整径向基函数的作用半径来控制插值矩阵条件数,进而消除使用径向基函数插值在嵌套边界区域出现的数值奇性问题;选用MD30P/30N多段翼与叁维AEDC典型外挂物分离模型对该插值方法进行验证。结果表明:改进后的径向基函数插值方法能够有效消除嵌套边界区域数值奇性,同时计算收敛速率更快,插值精度更高。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
径向插值论文参考文献
[1].汤凌志,阳小华,刘紫静,尹陈艳.基于径向基函数插值法的辐射场重构研究初探[J].价值工程.2019
[2].靳晨晖,王刚,陈鑫,周豪.非结构嵌套网格中的一种改进型径向基函数插值方法[J].航空工程进展.2019
[3].董有福,孟顺时,和娴.DEM径向基插值搜索方式优选分析[J].人民长江.2019
[4].董晨龙,周新志,白兴都,张若彬.基于Reflected-Sigmoid径向基函数插值的温度场重建算法[J].四川大学学报(自然科学版).2019
[5].周智勇,肖玮,田龙,胡培.基于免疫原理的径向基神经网络品位插值研究[J].矿业研究与开发.2019
[6].李春景,胡静,唐枝.基于层次特征的自适应径向基插值图像放大的保真指标[J].计算机科学.2019
[7].张棚.径向基函数插值及其在浅水波方程中的应用—误差估计及算法测试[D].电子科技大学.2019
[8].李佩哲,谢亮,喻伯平,张强,刘洪.基于径向基函数的结冰收集率计算的两级插值方法[J].科学技术与工程.2019
[9].冯佰威,冯梅,常海超,张丽妹.基于径向基插值的曲面变形方法在船型多目标优化中的应用[J].华南理工大学学报(自然科学版).2019
[10].陈文兴,闫丽萍,崔英,李苗.径向基网络的非线性插值与3D点云曲面重构技术[J].数学的实践与认识.2019