导读:本文包含了均值算法论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:均值,算法,模糊,图像,邻域,质心,下界。
均值算法论文文献综述
陈鹏,程思,鲍婷婷,翟伶俐,王宏斌[1](2019)在《基于二分K均值聚类算法的数字档案优化》一文中研究指出精细化预报服务和气象能源开发等需要时间序列长、空间和时间分辨率更高的气象资料,对逐小时资料的需求尤为突出。现存历史气象资料进行数字化扫描之后存在污点、褪色、模糊、字迹洇透等问题,不符合档案归档和服务的要求、同时也造成对图像进行数值提取的难度大大增加,提取结果的准确性也难以保证。本文提出一种基于K均值的图像优化算法,能够快速识别和区分图像背景和数据记录曲线,过滤图像中的噪点,统一数据记录曲线的颜色和粗细。经过优化之后的图像对比度和清晰度明显增加,体积明显缩小,实际应用中发现,经过优化之后的图像节约了存储资源和成本,同时清晰度有明显地提高,结果表明基于K均值的优化方法明显提高了气象数字化档案的质量和应用效果。(本文来源于《气象科技》期刊2019年06期)
张晓磊,潘卫军,陈佳炀,张智巍,王思禹[2](2019)在《基于均值漂移与空间信息的导向模糊C均值遥感图像分割算法》一文中研究指出作为图像数据结构分割的重要工具,模糊C均值已被广泛应用于计算机视觉领域;然而模糊C均值在图像分割过程中不能有效地保留边缘和抑制噪声,往往得不到理想的分割结果;为解决这一问题,文章利用导向滤波器推导出一种新的改进模糊C均值算法;该算法的第一个创新点是其线性平移不变滤波过程,利用边缘保持平滑特性来保留分割中的边缘结构;第二个创新点是该技术通过将空间信息引入目标函数来改善对噪声的鲁棒性,空间信息通过导向滤波的平均输出获得;为了解决聚类算法中初始聚类中心问题,在图像分割过程中使用均值漂移算法选取初始聚类中心;文章方法的主要优点在于其对边缘保留和噪声具有鲁棒性,进而提高分割精度;基于合成图像和真实遥感图像的实验结果表明,与其他主流分割算法相比,该方法在分割性能方面表现出了良好的性能。(本文来源于《计算机测量与控制》期刊2019年11期)
崔青,方欣,张志磊,王涛,张天伟[3](2019)在《基于模糊c均值算法和改进归一化的变压器故障诊断方法》一文中研究指出溶解气体分析法是诊断变压器故障的重要方法。本文建立了基于模糊c均值算法的变压器故障诊断模型。为了研究模糊c均值算法模型中样本的不同归一化法(即考虑到不同气体反应故障的灵敏程度不同)对聚类结果的影响程度,首先对溶解气体成分样本使用3种方法进行归一化,这3种方法是离差变换法、一般浓度归一化法和特征浓度归一化法。然后将归一化后的样本作为FCM算法的输入,以所求的隶属度矩阵确定样本所属故障类型。实例计算结果表明,采用特征浓度归一化可提高故障判断准确度。(本文来源于《电气技术》期刊2019年11期)
沈雯[4](2019)在《基于CIE LAB颜色模型和模糊C均值算法结合的火焰分割算法的研究》一文中研究指出目前视频图像型火灾探测技术不停地进步与完善,效果体现在复杂环境下,特别是大空间火灾探测的精准率得到大幅度提升,但是依然存在着诸多需要改进的地方。现在的图像型火灾探测算法中一般都存在着数据量较大的问题,为增加该算法的实用性、准确率,本文将对火焰分割进行系统研究。目标分割是开展图像特征提取和目标识别的前提和基础,起到关键性的作用,本文通过分析和借鉴当前的火焰分割算法,取长补短,积极探索建立了一种利用模糊C均值和CIE Lab颜色模型新的火焰分割方法。第一步利用CIE Lab空间设置火焰颜色模型,第二步根据不同颜色分量进行分割,第叁步利用模糊C均值算法计算出同一区域内的离散目标并进行合(本文来源于《电子世界》期刊2019年21期)
孟笑天,徐艳蕾,王新东,何润,翟钰婷[5](2020)在《基于改进K均值特征点聚类算法的作物行检测》一文中研究指出精准施药是现代精准农业发展不可或缺的一部分,而准确地提取作物行是进行精准施药的关键环节。为此,以苗期的玉米为研究对象,提出一种基于改进K均值特征点聚类算法的作物行检测方法。该方法根据距离函数最值关系求出最佳聚类数目,再依据点密度大小和邻域半径确定初始聚类中心,减少了迭代次数,提高了算法的执行效率和划分效果。首先,采用改进的超绿法(1.27G-R-B)进行灰度化和Otsu方法进行二值化,得到作物行的二值图像;然后,利用左右边缘中间线算法提取作物行特征点;最后,采用改进K均值算法和最小二乘法对作物行中心线特征点进行聚类和直线拟合。试验数据表明:提出的改进K均值特征点聚类算法识别效果好,精确度高,可为精准施药提供理论依据。(本文来源于《农机化研究》期刊2020年08期)
曾四鸣,程慧,程超,李建芬[6](2019)在《基于改进的模糊C均值算法电力负载预测研究》一文中研究指出为了提高电力负荷预测的精度,将天气、日期因素纳入到了计算的范畴中来,使用基于模糊聚类的对相似日进行选取,得出该日的短期电力负荷预测模型。本文算法将天气、日期因素建立起模糊系数特性映射表,实现了对应影响因素的量化处理,便于算法的实现。然后,使用模糊聚类算法对相关的数据进行分类,因为使用了相似日,因此,样本的数量得以大大减少,提高了算法的速度和准确度。本文的是力负荷模型将天气、日期考虑进了电力负荷预测影响的因素中去,减少了算法在预测上的随机性。仿真实验结果证明了该算法拥有更高的预测精度。(本文来源于《科技通报》期刊2019年10期)
马俊宏,武丽芬[7](2019)在《一种改进的加速K均值聚类算法》一文中研究指出针对当前聚类算法应用于大规模多类别数据集中时,计算量较大,且算法性能严重依赖于K值的不足,提出一种改进的加速K均值聚类算法。算法主要由两种策略组成:一是基于质心下界(PLB)的跳跃过程,新引入称为质心的固定点来计算对象和矩心间距离的下界,避免了常见聚类算法在收敛早期过程中的距离计算过程;二是基于不变矩心对(ICP)的跳跃过程,如果矩心更新步骤完成后被分配及未被分配矩心的位置保持不变,则维持对象分配策略不变且无需计算与未被分配矩心之间的距离。此外,还给出了将本文算法与Hamerly算法相结合的拓展算法以进一步提升聚类加速效果。对大规模高维图像数据集进行了仿真实验,结果表明,与Hamerly算法相比,本文算法在获得相同聚类效果的同时,极大地压缩了距离计算量。当K值较大时,本文算法的平均压缩率更高,平均耗时更少。(本文来源于《太赫兹科学与电子信息学报》期刊2019年05期)
孙丽,孙顺远[8](2019)在《基于K均值聚类的非均匀分簇路由算法》一文中研究指出针对LEACH协议中簇头选择存在随机性,频繁性,不合理性等问题,提出了一种基于K均值聚类的非均匀分簇路由算法。该算法通过求最优解得到网络节点的簇头最优数,结合K-means聚类算法,将网络中随机分布的节点按照簇头数分成若干簇,在每个簇中选择距离聚类中心最近的节点作为簇头,简化了LEACH协议中的簇建立阶段,有效减少了网络中频繁进行簇头选择和簇建立过程的能量消耗,使得网络生命周期得以延长。通过分析Matlab仿真结果,可以看出与传统LEACH协议、SEP协议相比,论文算法能够更好地优化簇结构,减少节点不必要的能耗从而提高网络的稳定性,有效延长整个网络的生存周期。(本文来源于《计算机与数字工程》期刊2019年10期)
曹艳华,李楠,陈梦成[9](2019)在《均值对奇异特征值分解算法的影响机制》一文中研究指出该文研究了均值在奇异特征分解算法(POD)中的影响机制.首先,给出了POD方法中时间系数的相关基本性质.其次,基于矩阵分析理论,引入全信号及去除均值部分信号的相关矩阵,且从理论上推导了均值对POD方法的影响机制,这在以往研究中较少见到.最后,通过数值算例对均值场在POD过程中的影响机理进行验证.(本文来源于《数学物理学报》期刊2019年05期)
高飞,朱磊,冯子金,韩普[10](2019)在《基于变差系数的SAR图像非局部均值滤波算法》一文中研究指出SAR(synthetic aperture radar)图像有固有的乘性相干斑噪声,抑制相干斑噪声和保护边缘信息是研究的重要内容。文章提出了一种变差系数差构建的非局部平均滤波算法DCV-NLM(differenceof coefficient of variation non-local means)。首先,搜索窗口中的变差系数的像素与中心像素在相似窗口中之间的局部差,其次,局部差由两个范数构造的相似性参数,用负指数形式得到每个像素的加权系数,最后是对SAR图像的噪声执行加权滤波。通过提出的算法与IDPAD算法对比,从抑制相干斑图像视觉效果方面对比,DCV-NLM算法比起IDPAD算法有更好的相干斑抑制性能。(本文来源于《信息通信》期刊2019年10期)
均值算法论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
作为图像数据结构分割的重要工具,模糊C均值已被广泛应用于计算机视觉领域;然而模糊C均值在图像分割过程中不能有效地保留边缘和抑制噪声,往往得不到理想的分割结果;为解决这一问题,文章利用导向滤波器推导出一种新的改进模糊C均值算法;该算法的第一个创新点是其线性平移不变滤波过程,利用边缘保持平滑特性来保留分割中的边缘结构;第二个创新点是该技术通过将空间信息引入目标函数来改善对噪声的鲁棒性,空间信息通过导向滤波的平均输出获得;为了解决聚类算法中初始聚类中心问题,在图像分割过程中使用均值漂移算法选取初始聚类中心;文章方法的主要优点在于其对边缘保留和噪声具有鲁棒性,进而提高分割精度;基于合成图像和真实遥感图像的实验结果表明,与其他主流分割算法相比,该方法在分割性能方面表现出了良好的性能。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
均值算法论文参考文献
[1].陈鹏,程思,鲍婷婷,翟伶俐,王宏斌.基于二分K均值聚类算法的数字档案优化[J].气象科技.2019
[2].张晓磊,潘卫军,陈佳炀,张智巍,王思禹.基于均值漂移与空间信息的导向模糊C均值遥感图像分割算法[J].计算机测量与控制.2019
[3].崔青,方欣,张志磊,王涛,张天伟.基于模糊c均值算法和改进归一化的变压器故障诊断方法[J].电气技术.2019
[4].沈雯.基于CIELAB颜色模型和模糊C均值算法结合的火焰分割算法的研究[J].电子世界.2019
[5].孟笑天,徐艳蕾,王新东,何润,翟钰婷.基于改进K均值特征点聚类算法的作物行检测[J].农机化研究.2020
[6].曾四鸣,程慧,程超,李建芬.基于改进的模糊C均值算法电力负载预测研究[J].科技通报.2019
[7].马俊宏,武丽芬.一种改进的加速K均值聚类算法[J].太赫兹科学与电子信息学报.2019
[8].孙丽,孙顺远.基于K均值聚类的非均匀分簇路由算法[J].计算机与数字工程.2019
[9].曹艳华,李楠,陈梦成.均值对奇异特征值分解算法的影响机制[J].数学物理学报.2019
[10].高飞,朱磊,冯子金,韩普.基于变差系数的SAR图像非局部均值滤波算法[J].信息通信.2019