量子粒子群优化社区发现方法

量子粒子群优化社区发现方法

论文摘要

社区结构是复杂网络的一种重要的特征,为了解决基于模块度优化的社区发现方法现存在的分辨率限制问题,提出一种离散量子粒子群优化社区发现方法(NQDPSO),将核心节点与邻居的普通节点构成模体,该模体为量子粒子群算法的初始值。同时,构造模体加权社区聚类函数为算法的适应性函数,该函数利用了三角形模体来判断社区的稳定性度量问题,从而量化社区结构稳定性。采用压缩因子函数调节全局和局部搜索模型,结合量子粒子群算法,使该算法全局收敛。算法采用模体有序表编码方式,并在模拟和真实数据集上的实验结果均表明,相比于其他算法,NQD-PSO算法可以挖掘更高质量的社区结构。

论文目录

  • 0 引言
  • 1 基本概念
  • 2 量子粒子群优化社区发现方法
  •   2.1 适应度函数
  •   2.2 粒子群算法基本原理
  •   2.3 量子粒子群更新规则
  •   2.4 粒子编码与解码
  • 3 实验结果与分析
  •   3.1 评价标准
  •   3.2 算法比较结果评价
  • 4 结语
  • 文章来源

    类型: 期刊论文

    作者: 杨忠保,楚杨杰,洪叶,江登英

    关键词: 社区发现,量子粒子群,核心节点,优化

    来源: 复杂系统与复杂性科学 2019年01期

    年度: 2019

    分类: 基础科学,信息科技

    专业: 数学,自动化技术

    单位: 黔南民族师范学院数学与统计学院,武汉理工大学理学院

    基金: 中央高校基本科研业务费专项资金(2017IB014),贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]429)

    分类号: O157.5;TP18

    DOI: 10.13306/j.1672-3813.2019.01.004

    页码: 36-42

    总页数: 7

    文件大小: 362K

    下载量: 102

    相关论文文献

    • [1].粒子群优化算法在港口船舶物流中的应用[J]. 舰船科学技术 2020(04)
    • [2].求解电力系统经济调度问题的改进粒子群优化算法[J]. 控制与决策 2020(08)
    • [3].基于改进粒子群优化算法的溶解氧调控系统设计[J]. 传感器与微系统 2020(06)
    • [4].基于改进粒子群优化算法的微电网经济调度研究[J]. 上海电气技术 2020(02)
    • [5].粒子群优化算法[J]. 软件 2020(05)
    • [6].基于扩容和双距离决策的多目标粒子群优化算法[J]. 重庆邮电大学学报(自然科学版) 2020(03)
    • [7].改进粒子群优化算法及其在聚类分析中应用[J]. 系统仿真学报 2020(08)
    • [8].优质个体最优动态空间变异的粒子群优化算法[J]. 计算机应用研究 2020(08)
    • [9].基于自适应粒子群优化算法的无人机三维航迹规划[J]. 海军航空工程学院学报 2020(03)
    • [10].基于并行结构的多种群粒子群优化算法[J]. 传感器与微系统 2020(09)
    • [11].融入社会影响力的粒子群优化算法[J]. 计算机科学与探索 2020(11)
    • [12].基于改进粒子群优化-反向传播神经网络的制造业产能预测[J]. 机械制造 2019(03)
    • [13].层次学习骨干粒子群优化算法[J]. 控制与决策 2016(12)
    • [14].一种面向网络边缘任务调度问题的多方向粒子群优化算法[J]. 计算机应用与软件 2017(04)
    • [15].基于粒子群优化的组播路由算法研究[J]. 信息与电脑(理论版) 2017(10)
    • [16].改进的粒子群优化算法的研究[J]. 科技创新与生产力 2017(09)
    • [17].一种改进的粒子群优化算法[J]. 陕西师范大学学报(自然科学版) 2016(02)
    • [18].改进惯性权重的简化粒子群优化算法[J]. 湖北民族学院学报(自然科学版) 2016(01)
    • [19].粒子群优化算法基本研究[J]. 科技经济导刊 2016(21)
    • [20].中心粒子群优化算法[J]. 电子测试 2014(23)
    • [21].基于粒子群优化算法的器件模型表面势求解[J]. 计算机时代 2015(03)
    • [22].具有反向学习和自适应逃逸功能的粒子群优化算法[J]. 计算机应用 2015(05)
    • [23].基于不同学习模型的精英反向粒子群优化算法[J]. 小型微型计算机系统 2015(06)
    • [24].改进惯性权重的粒子群优化算法[J]. 河西学院学报 2020(05)
    • [25].基于粒子群优化算法的算法实现及建筑生形——模拟鸟类觅食形态的建筑雏形设计[J]. 华中建筑 2020(02)
    • [26].基于动态种群的双重学习粒子群优化算法[J]. 南昌工程学院学报 2020(01)
    • [27].基于博弈机制的多目标粒子群优化算法[J]. 计算机工程与设计 2020(04)
    • [28].求解特征值互补问题的基本粒子群优化算法[J]. 内蒙古民族大学学报(自然科学版) 2020(03)
    • [29].进化状态判定与学习策略协同更新的二进制粒子群优化算法[J]. 浙江工业大学学报 2020(05)
    • [30].粒子群优化算法中惯性权重改进策略综述[J]. 渤海大学学报(自然科学版) 2019(03)

    标签:;  ;  ;  ;  

    量子粒子群优化社区发现方法
    下载Doc文档

    猜你喜欢