论文摘要
情绪作为人脑的高级功能,对人们的个性特征和心理健康有很大的影响,利用网上公开的脑电情绪数据库(Deap数据库),根据心理较价和激励唤醒度等级进行情绪划分,对压力和平静两种情绪进行研究分析。在利用db4小波分解与重构算法分解信号的基础上,根据左右脑脑电在产生情绪时脑电信号非对称性的特点,提出一种新的情感特征提取方法,通过计算右侧导联的微分熵值除以左、右对称导联的微分熵之差与右侧导联的微分熵值除以左、右对称导联的微分熵之和,提取出脑电信号的不对称熵特征。利用遗传算法优化的支持向量机对情绪分类识别,平均识别率为88.625%,对比传统特征的分类识别率,利用不对称熵特征的分类识别率有明显提高。
论文目录
文章来源
类型: 期刊论文
作者: 柳长源,李文强,毕晓君
关键词: 脑电信号,情绪识别,小波分解,不对称熵,支持向量机,遗传算法
来源: 传感技术学报 2019年01期
年度: 2019
分类: 信息科技,基础科学,医药卫生科技
专业: 生物学,生物医学工程,电信技术
单位: 哈尔滨理工大学电气与电子工程学院,哈尔滨工程大学信息与通信工程学院
基金: 国家自然科学基金项目(51779050),黑龙江省自然科学基金项目(F2016022)
分类号: TN911.7;R318
页码: 82-88
总页数: 7
文件大小: 1319K
下载量: 1038
相关论文文献
- [1].基于脑电信号反馈控制的双轨道小车控制器设计[J]. 电子制作 2019(23)
- [2].酒精脑电信号降维去噪方法的研究[J]. 长春理工大学学报(自然科学版) 2019(06)
- [3].脑电信号分析方法及其应用[J]. 中国医疗器械杂志 2020(02)
- [4].一种基于脑电信号的眼动方向分类方法[J]. 计算机科学 2020(04)
- [5].我国脑电信号分析方法及在工学方面的应用研究[J]. 中外企业家 2020(19)
- [6].基于脑电信号分析的换挡布置优化[J]. 汽车实用技术 2020(17)
- [7].基于多尺度排列熵的脑电信号分类[J]. 中国数字医学 2019(05)
- [8].基于深度学习的癫痫脑电信号分析与预测[J]. 长春大学学报 2019(06)
- [9].关于脑电信号的情感优化识别仿真[J]. 计算机仿真 2018(06)
- [10].基于脑电信号的耳鸣识别算法研究[J]. 科技传播 2018(13)
- [11].癫痫脑电信号的相关性分析[J]. 电子世界 2017(05)
- [12].基于半监督学习的脑电信号特征提取及识别[J]. 工程科学与技术 2017(S2)
- [13].基于脑电信号的驾驶疲劳的研究[J]. 世界最新医学信息文摘 2017(55)
- [14].运动想象脑电信号特征的提取与分类[J]. 工业控制计算机 2015(02)
- [15].脑电信号的最优分数阶傅里叶变换[J]. 沈阳大学学报(自然科学版) 2019(06)
- [16].基于多特征卷积神经网路的运动想象脑电信号分析及意图识别[J]. 仪器仪表学报 2020(01)
- [17].人脑电信号实时监测原型系统设计与实现[J]. 计算机工程与应用 2019(02)
- [18].基于方差和深度学习的脑电信号分类算法[J]. 黑龙江工程学院学报 2017(06)
- [19].脑电信号识别及其在机械手臂控制中的应用[J]. 生物医学工程研究 2016(04)
- [20].少年与中年脑电信号的多尺度符号序列熵分析[J]. 北京生物医学工程 2016(06)
- [21].基于卷积神经网络的脑电信号上肢运动意图识别[J]. 浙江大学学报(工学版) 2017(07)
- [22].脑电信号在线采集系统设计与实现[J]. 微型机与应用 2017(22)
- [23].便携式脑电信号采集与处理系统(英文)[J]. 航天医学与医学工程 2016(03)
- [24].正常人中医体质分类与脑电信号相关性探讨[J]. 辽宁中医药大学学报 2014(11)
- [25].脑电信号采集系统的设计[J]. 河北建筑工程学院学报 2014(01)
- [26].思维脑电信号的关联维数分析[J]. 河南科技大学学报(自然科学版) 2012(01)
- [27].一种适用于清醒动物脑电信号采集的固定装置[J]. 首都医科大学学报 2011(06)
- [28].运动想象脑电信号识别研究[J]. 计算机工程与应用 2010(33)
- [29].基于照片刺激下的脑电身份识别研究[J]. 江西蓝天学院学报 2011(04)
- [30].静息脑电信号频域不对称指数特征识别算法[J]. 电子设计工程 2020(09)