W含量对选区激光熔化W-Cu组织与热物性的影响

W含量对选区激光熔化W-Cu组织与热物性的影响

论文摘要

为获得适用于电子封装的W-Cu材料,对60W-40Cu、70W-30Cu、75W-25Cu和80W-5Ni-15Cu合金进行选区激光熔化实验,研究了W含量对合金微观组织、致密度、热导率、热膨胀系数、表面粗糙度、硬度的影响。结果显示:4种W-Cu合金的成形表面均存在球化现象;当W的质量分数低于70%时,致密化机制为重排致密,W相间几乎不发生连接与团聚,热传导优先在铜相中进行;随着W的质量分数上升到75%,致密化机制主要为固态烧结,热传导路径由以W相为核心、边缘由Cu相包裹的结构单元组成;随着W含量增加,W-Cu合金的热导率和热膨胀系数与理论值的偏差增大,合金的表面粗糙度、硬度均增加。最终获得60W-40Cu、70W-30Cu、75W-25Cu、80W-5Ni-15Cu成形后的致密度分别为97.9%,94.5%,91.6%,91.9%,热导率分别为210.4,176.8,152.7,121.3 W·K-1·m-1,热膨胀系数分别为11.05×10-6,9.33×10-6,8.17×10-6,7.02×10-6℃-1,表面粗糙度分别是9.2,13.7,15.2,15.4μm,显微硬度分别是183,324,567,729 HV。

论文目录

  • 1 引 言
  • 2 实验过程
  • 3 实验结果
  •   3.1 致密度
  •   3.2 微观组织和凝固过程
  •   3.3 热物理性能
  •     3.3.1 W含量对热导率的影响
  •     3.3.2 W含量对热膨胀系数的影响
  •     3.3.3 表面粗糙度和硬度
  • 4 结 论
  • 文章来源

    类型: 期刊论文

    作者: 闫岸如,刘学胜,王智勇,贺定勇

    关键词: 激光技术,选区激光熔化,含量,微观组织,导热性,热膨胀,表面粗糙度

    来源: 中国激光 2019年07期

    年度: 2019

    分类: 基础科学,工程科技Ⅰ辑

    专业: 金属学及金属工艺

    单位: 北京工业大学材料科学与工程学院,北京工业大学激光工程研究院

    基金: 国家重点研发计划(2017YFB0305800)

    分类号: TG665;TG146.411

    页码: 133-143

    总页数: 11

    文件大小: 5736K

    下载量: 137

    相关论文文献

    • [1].基于30CrNi2MoVA的激光熔化沉积工艺参数研究[J]. 机械 2020(05)
    • [2].选择性激光熔化技术研究现状及发展趋势[J]. 河北工业科技 2017(04)
    • [3].选择性激光熔化成型可控多孔支撑研究[J]. 应用激光 2017(04)
    • [4].选择性激光熔化成型中零件成型角度对其机械性能的影响[J]. 浙江工业大学学报 2017(05)
    • [5].选择性激光熔化中铺粉层厚的影响[J]. 合肥工业大学学报(自然科学版) 2017(09)
    • [6].选区激光熔化悬垂结构支撑添加研究[J]. 工具技术 2019(12)
    • [7].微观选择性激光熔化技术发展的现状及未来展望[J]. Engineering 2019(04)
    • [8].金属选区激光熔化的研究现状[J]. 材料导报 2017(S1)
    • [9].激光熔化沉积钛合金及其复合材料的研究进展[J]. 热加工工艺 2010(08)
    • [10].激光熔化沉积TiC/CaF_2/Inconel 718复合材料的组织及高温摩擦磨损性能[J]. 中国激光 2020(01)
    • [11].选区激光熔化成形镍基718合金的工艺及性能[J]. 哈尔滨理工大学学报 2019(06)
    • [12].工艺参数对316L不锈钢选区激光熔化成型组织性能的影响[J]. 湖南工程学院学报(自然科学版) 2019(04)
    • [13].激光熔化沉积300M超高强度钢组织与力学性能[J]. 金属热处理 2008(09)
    • [14].镍基单晶高温合金选区激光熔化成形工艺及组织[J]. 中国激光 2019(11)
    • [15].2024铝合金粉末选区激光熔化成形工艺研究[J]. 铸造技术 2020(01)
    • [16].选区激光熔化制备蜂窝状多孔钛及表征[J]. 金属功能材料 2020(04)
    • [17].金属粉末选区激光熔化球化现象研究[J]. 铸造技术 2017(02)
    • [18].工艺参数对选区激光熔化中成形形变的影响[J]. 激光与光电子学进展 2020(05)
    • [19].基于选区激光熔化制备的点阵优化结构形貌和组织分析[J]. 应用激光 2020(02)
    • [20].铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报 2020(S1)
    • [21].激光熔化沉积成形缺陷及其控制方法综述[J]. 材料导报 2018(15)
    • [22].基于粉体熔化的选区激光熔化成型方向误差分析[J]. 激光与光电子学进展 2017(01)
    • [23].激光功率与底面状态对选区激光熔化球化的影响[J]. 航空学报 2019(12)
    • [24].选区激光熔化碳化钒颗粒强化316L不锈钢的点阵结构及性能[J]. 激光与光电子学进展 2019(24)
    • [25].扫描策略对选区激光熔化钴铬合金组织和性能的影响[J]. 激光杂志 2020(01)
    • [26].选区激光熔化金属表面成形质量控制的研究进展[J]. 表面技术 2020(09)
    • [27].选区激光熔化制备316L不锈钢成形工艺参数对致密度的影响和优化[J]. 锻压技术 2019(11)
    • [28].选区激光熔化纯钨——粉末粒径对激光吸收的影响和扫描轨迹形成机理研究[J]. Engineering 2019(04)
    • [29].选区激光熔化拼接复合成型基础工艺研究[J]. 应用激光 2016(06)
    • [30].选择性激光熔化技术在口腔医学中的应用[J]. 口腔材料器械杂志 2012(01)

    标签:;  ;  ;  ;  ;  ;  ;  

    W含量对选区激光熔化W-Cu组织与热物性的影响
    下载Doc文档

    猜你喜欢