短期增温下青藏高原多年冻土区植物生长季土壤水分的动态变化

短期增温下青藏高原多年冻土区植物生长季土壤水分的动态变化

论文摘要

以青藏高原腹地典型高寒草甸植被类型为研究对象,采用红外灯加热的方法模拟全球增温,并利用水分探头,于2012年植物生长季(5—9月)获取0~100 cm不同土层深度土壤水分含量数据,并分析其对增温的响应。结果表明:(1)短期增温对高寒草甸土壤水分含量有提高作用,但增幅并不显著(P> 0. 05),平均提高2. 85%。(2)土壤水分含量随土层深度的增加呈现先减少后增加的趋势,在10~20 cm土层深度处降为最低值13. 8%,在60~100cm土层深度附近达到了20. 57%的最高值;对照组5个月10~20 cm土层深度的土壤水分含量显著低于其他土层,而增温组0~20 cm土层深度的土壤含水量显著低于其他土层深度,表明增温对表层(0~10 cm)的土壤含水量影响较大,对深层土壤含水量的影响则较小,而且短期增温不会对土壤水分的垂直分布趋势产生影响。(3)土壤水分含量随时间的变化,在5—8月呈上升趋势,表明在青藏高原北麓河地区植物生长季,8月是其土壤水分含量最充足的月份,到了9月土壤中含水量开始降低,但5个土层深度降幅均不明显;增温组土壤水分含量随时间的变化趋势与对照组基本一致。

论文目录

  • 1 数据与方法
  •   1.1 研究区域概况
  •   1.2 样地设置
  •   1.3 土壤水分测定
  • 2 结果与分析
  •   2.1 各月份土壤水分在不同实验处理下的变化
  •   2.2 不同深度的土壤水分在不同实验处理下的差异
  •   2.3 不同实验处理下的土壤水分随土层深度的变化
  •   2.4 不同实验处理下的土壤水分随时间的变化
  • 3 结论与讨论
  •   3.1 结论
  •   3.2 讨论
  •     3.2.1 增温对土壤水分的影响
  •     3.2.2 高寒草甸土壤水分的时空变异性
  • 文章来源

    类型: 期刊论文

    作者: 李艳萍,史利江,徐满厚,李文刚

    关键词: 土壤水分,高寒草甸,模拟增温,植物生长季,多年冻土,青藏高原

    来源: 干旱区研究 2019年03期

    年度: 2019

    分类: 基础科学

    专业: 生物学

    单位: 太原师范学院地理科学学院,山西财经大学资源环境学院,山西省农业科学院农业资源与经济研究所

    基金: 国家自然科学基金青年科学基金项目(41501219),山西省自然科学基金面上项目(2016011085),山西省高校人文社科重点研究基地项目(2014341)共同资助

    分类号: Q948

    DOI: 10.13866/j.azr.2019.03.02

    页码: 537-545

    总页数: 9

    文件大小: 315K

    下载量: 413

    相关论文文献

    • [1].基于多线程并发的自动土壤水分观测处理平台[J]. 气象水文海洋仪器 2019(04)
    • [2].控制水稻盆栽土壤水分的新方法[J]. 农业科技通讯 2019(12)
    • [3].基于Triple-Collocation方法的微波遥感土壤水分产品不确定性分析及数据融合[J]. 遥感技术与应用 2019(06)
    • [4].三峡山地不同坡位土壤水分的时序变化研究[J]. 华中师范大学学报(自然科学版) 2020(04)
    • [5].基于水文气象多因子的夏玉米生育期土壤水分预测研究[J]. 节水灌溉 2020(07)
    • [6].基于合成孔径雷达的土壤水分反演研究进展[J]. 三峡生态环境监测 2020(02)
    • [7].海南省自动土壤水分观测数据异常原因分析[J]. 气象科技进展 2020(04)
    • [8].对一体化土壤水分监测仪的几点改进意见[J]. 新疆农垦科技 2020(09)
    • [9].分类回归树算法在土壤水分估算中的应用[J]. 遥感信息 2018(03)
    • [10].太阳能无线地面土壤水分检测系统[J]. 现代计算机(专业版) 2018(24)
    • [11].土壤水分站日常维护及常见故障分析[J]. 现代农业科技 2016(23)
    • [12].浅谈自动土壤水分观测仪维护与维修[J]. 科技展望 2016(34)
    • [13].抚顺市土壤水分自动站观测数据差异性检验及原因分析[J]. 现代农业科技 2017(03)
    • [14].农作物对表层土壤水分的影响[J]. 太原师范学院学报(自然科学版) 2017(01)
    • [15].农作物高产适宜土壤水分指标的分析[J]. 农业与技术 2017(09)
    • [16].四川地区自动土壤水分站数据质量控制方法研究[J]. 高原山地气象研究 2017(02)
    • [17].抚顺地区自动土壤水分站的布局与应用[J]. 现代农业科技 2017(20)
    • [18].自动土壤水分观测仪的日常维护及常见故障排除[J]. 黑龙江气象 2015(04)
    • [19].土壤水分再分布特性研究进展[J]. 排灌机械工程学报 2016(03)
    • [20].自动土壤水分观测仪在气象部门的建设与使用[J]. 现代农业科技 2016(05)
    • [21].凤阳一次强降雨过程自动土壤水分观测数据分析[J]. 安徽农学通报 2016(11)
    • [22].自动土壤水分观测仪在实际工作中的使用与维护[J]. 农业灾害研究 2016(08)
    • [23].刍议影响土壤水分观测精确度的原因及观测注意事项[J]. 科技展望 2015(05)
    • [24].盆栽梅花的肥水宜相适[J]. 山西老年 2017(05)
    • [25].火星上到底有没有水[J]. 小猕猴智力画刊 2017(Z2)
    • [26].自动土壤水分观测数据异常原因分析[J]. 大气科学研究与应用 2013(01)
    • [27].高分辨率(30 m)土壤水分数据构建[J]. 气象科技进展 2020(02)
    • [28].黄土高原植被恢复过程中土壤水分有效性评价[J]. 灌溉排水学报 2020(06)
    • [29].半干旱草原型流域土壤水分变异及其影响因素分析[J]. 农业工程学报 2020(13)
    • [30].人工固沙区植被演替过程中土壤水分时空分异特征[J]. 干旱区研究 2020(04)

    标签:;  ;  ;  ;  ;  ;  

    短期增温下青藏高原多年冻土区植物生长季土壤水分的动态变化
    下载Doc文档

    猜你喜欢