基于PCA和BRNN的土地负荷类型预测

基于PCA和BRNN的土地负荷类型预测

论文摘要

随着社会经济的发展,新开发区域不断涌现,对其进行空间负荷预测是配电网规划的一项基础工作。空间负荷预测最常用的方法为用地仿真法,其核心在于土地负荷类型的转换规则。转换规则的建立需要大量的地理数据信息,该数据庞大且内容繁杂,这会导致建模困难、关键信息难以提取以及局部数据对转换规则影响过大等问题。为此,提出一种基于主成分分析法和贝叶斯正规化神经网络的土地负荷预测方法。通过对由空间地理系统获取的空间地理信息进行主成分分析,在实现关键主成分信息提取的同时,达到数据降维简化的目的。在此基础上,进一步在人工神经网络建模中,加入贝叶斯正规化理论以增强系统的泛化能力,提高预测准确度。案例分析证明了该方法的可行性。

论文目录

  • 0 引言
  • 1 土地类型划分及空间数据获取
  •   1.1土地类型划分准则
  •   1.2空间数据获取方法
  • 2 空间数据整理及化简
  • 3 神经网络预测模型的建立
  • 4 实验及结果分析
  • 5 结束语
  • 文章来源

    类型: 期刊论文

    作者: 陆旦宏,王鑫,吴雅玲,蒋春容

    关键词: 空间负荷预测,地理信息系统,主成分分析法,贝叶斯正规化,人工神经网络

    来源: 电气应用 2019年11期

    年度: 2019

    分类: 工程科技Ⅱ辑

    专业: 电力工业

    单位: 南京工程学院

    基金: 国家自然科学基金项目(51507076),江苏省“六大人才高峰”高层次人才项目(KTHY-040),江苏省配电网智能技术与装备协同创新中心开放基金项目(XTCX201706)

    分类号: TM715

    页码: 17-24

    总页数: 8

    文件大小: 2478K

    下载量: 72

    相关论文文献

    • [1].采用联系数与蒙特卡洛模拟的规模化电动汽车充电负荷预测[J]. 电器与能效管理技术 2019(20)
    • [2].基于自适应卡尔曼滤波在气象影响下负荷预测[J]. 计算机测量与控制 2020(01)
    • [3].含分布式电源的智能电网负荷预测研究[J]. 国外电子测量技术 2020(02)
    • [4].基于力控上位机软件热网负荷预测[J]. 数字技术与应用 2020(01)
    • [5].基于多气象因素混合回归的重庆地区夏季日最高负荷预测[J]. 水电能源科学 2020(04)
    • [6].空间负荷预测在某县城核心区负荷预测的应用[J]. 电子技术与软件工程 2019(15)
    • [7].配电网规划中负荷预测实际问题及措施[J]. 通讯世界 2017(22)
    • [8].基于分布式图计算的台区负荷预测技术研究[J]. 中国电机工程学报 2018(12)
    • [9].电力用户侧大数据分析与并行负荷预测研究[J]. 自动化应用 2016(11)
    • [10].电力检修中负荷预测技术的发展现状研究[J]. 民营科技 2016(12)
    • [11].基于电力载波通信的居民用电负荷预测大数据应用[J]. 科技创新与应用 2017(04)
    • [12].基于贪婪算法的配电网网格负荷预测与规划方法[J]. 计算机工程 2016(11)
    • [13].负荷预测在煤改电工程的应用分析[J]. 电气时代 2017(05)
    • [14].组合预测在饱和负荷预测中的应用[J]. 电力与能源 2017(02)
    • [15].基于区域负荷预测值综合评价的大电网短期负荷预测[J]. 电气应用 2017(11)
    • [16].空间负荷预测中确定元胞负荷合理最大值的主成分分析法[J]. 电测与仪表 2017(14)
    • [17].多级负荷预测协调的母线负荷预测系统[J]. 云南电力技术 2017(03)
    • [18].饱和负荷预测方法研究综述[J]. 山东工业技术 2017(23)
    • [19].配电网空间负荷预测方法的应用研究[J]. 城市建设理论研究(电子版) 2017(22)
    • [20].广西来宾供电局:负荷预测“扬眉吐气”[J]. 广西电业 2015(08)
    • [21].负荷预测精准度对电力系统经济运行的影响[J]. 电子测试 2016(03)
    • [22].基于灰色模型的电力系统长期负荷预测优化研究[J]. 黑龙江科学 2020(14)
    • [23].考虑光伏出力与电动汽车接入的配电网空间负荷预测[J]. 电子设计工程 2020(15)
    • [24].在线学习神经网络用于空调负荷预测研究[J]. 建筑热能通风空调 2020(08)
    • [25].机理计算与机器学习结合的空调负荷预测[J]. 江苏建筑 2020(04)
    • [26].云南电网综合负荷预测平台升级后的功能及应用[J]. 云南电力技术 2018(06)
    • [27].基于土地使用性质的饱和空间负荷预测研究[J]. 广东电力 2019(08)
    • [28].基于多代理系统理论的空间负荷预测——空间负荷预测实例[J]. 科技创新导报 2018(01)
    • [29].基于空间负荷预测的临夏城网远期饱和负荷预测方法研究[J]. 电工技术 2018(11)
    • [30].基于支持向量机的某地区电网短期电力负荷预测[J]. 电网与清洁能源 2016(12)

    标签:;  ;  ;  ;  ;  

    基于PCA和BRNN的土地负荷类型预测
    下载Doc文档

    猜你喜欢