分数阶Laplacian问题解的存在性与多解性

分数阶Laplacian问题解的存在性与多解性

论文摘要

本文利用变分法主要研究了分数阶Laplacian问题解的存在性与多解性,其中首先研究了非局部临界问题.假设非线性项满足一定的增长性条件,利用山路引理和环绕定理可分别得到临界问题单个解的存在性,这个结果推广了Servadei等人[Trans.Amer.Math.Soc.,2015],[Rev.Mat.Complut.,2015],也包含了[Adv.Nonlinear Anal.,2013]的定理1.1.更重要的是,本文证明了临界问题多个解的存在性,此结果是Sang[Nonlinear Anal.,1994],Fiscella等人[Bull.Sci.Math.,2016]主要结果的推广.随后,本文还研究了非局部次临界问题.当非线性项满足合适的增长性条件时,通过对称山路引理,得到次临界问题存在无穷多个解.这个结果推广了Kajikiya等人[J.Math.Anal.Appl.,1990],Zhang等人[Nonlinearity.,2015]的主要结果。

论文目录

  • 中文摘要
  • Abstract
  • 第一章 引言
  •   1.1 研究背景
  •   1.2 研究的问题及研究现状
  •   1.3 一些基本定义及记号
  •   1.4 本文主要结果
  • 第二章 基本知识
  •   2.1 一些引理
  •   2.2 几个经典的临界点定理
  • 第三章 带临界项的非局部问题解的存在性与分歧
  •   3.1 一个局部的Palais-Smale条件
  •   3.2 泛函的几何结构
  • 第四章 带次临界项的非局部问题的多解性
  • 研究展望
  • 参考文献
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 李盼丽

    导师: 孙红蕊

    关键词: 非局部算子,临界点理论,变分法,存在性,多解性

    来源: 兰州大学

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 兰州大学

    分类号: O175

    总页数: 46

    文件大小: 1878K

    下载量: 35

    相关论文文献

    • [1].Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space[J]. Chinese Annals of Mathematics,Series B 2020(03)
    • [2].Equivalence Relation between Initial Values and Solutions for Evolution p-Laplacian Equation in Unbounded Space[J]. Communications in Mathematical Research 2020(01)
    • [3].Ordering Quasi-Tree Graphs by the Second Largest Signless Laplacian Eigenvalues[J]. Journal of Mathematical Research with Applications 2020(05)
    • [4].Existence of Solutions to Nonlinear Schr?dinger Equations Involving N-Laplacian and Potentials Vanishing at Infinity[J]. Acta Mathematica Sinica 2020(10)
    • [5].含偶圈图的Laplacian谱刻画[J]. 运筹学学报 2018(04)
    • [6].四阶p-Laplacian边值问题正解的存在性(英文)[J]. 数学季刊(英文版) 2018(04)
    • [7].The Existence of Semiclassical States for Some P-Laplacian Equation with Critical Exponent[J]. Acta Mathematicae Applicatae Sinica 2017(02)
    • [8].Soft Decision Based Gaussian-Laplacian Combination Model for Noisy Speech Enhancement[J]. Chinese Journal of Electronics 2018(04)
    • [9].具有奇性的Laplacian型方程周期正解的存在性[J]. 韩山师范学院学报 2016(06)
    • [10].Blow-up of p-Laplacian evolution equations with variable source power[J]. Science China(Mathematics) 2017(03)
    • [11].Solvability for a Coupled System of Fractional p-Laplacian Differential Equations at Resonance[J]. Communications in Mathematical Research 2017(01)
    • [12].The Existence of Nodal Solutions for the Half-Quasilinear p-Laplacian Problems[J]. Journal of Mathematical Research with Applications 2017(02)
    • [13].Coiflet solution of strongly nonlinear p-Laplacian equations[J]. Applied Mathematics and Mechanics(English Edition) 2017(07)
    • [14].Laplacian Energies of Regular Graph Transformations[J]. Journal of Donghua University(English Edition) 2017(03)
    • [15].Existence of Solutions to a p-Laplacian Equation with Integral Initial Condition[J]. Communications in Mathematical Research 2017(04)
    • [16].The Signless Laplacian Spectral Characterization of Strongly Connected Bicyclic Digraphs[J]. Journal of Mathematical Research with Applications 2016(01)
    • [17].Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition[J]. Acta Mathematicae Applicatae Sinica 2015(01)
    • [18].Existence of Solutions for a Four-point Boundary Value Problem with a p(t)-Laplacian[J]. Communications in Mathematical Research 2015(01)
    • [19].奇异Φ-Laplacian周期边值问题解的存在性[J]. 山东大学学报(理学版) 2015(08)
    • [20].单圈图的最小无号Laplacian谱展[J]. 华南师范大学学报(自然科学版) 2013(04)
    • [21].循环图的Laplacian谱展[J]. 数学杂志 2013(06)
    • [22].The Normalized Laplacian Spectrum of Pentagonal Graphs and Its Applications[J]. Journal of Mathematical Research with Applications 2019(04)
    • [23].Evolutionary p(x)-Laplacian Equation with a Convection Term[J]. Acta Mathematicae Applicatae Sinica 2019(03)
    • [24].Existence of Nonnegative Solutions for a Class of Systems Involving Fractional(p,q)-Laplacian Operators[J]. Chinese Annals of Mathematics,Series B 2018(02)
    • [25].一类p-Laplacian方程单侧全局区间分歧及应用[J]. 数学物理学报 2018(04)
    • [26].Energy and Laplacian of fractal interpolation functions[J]. Applied Mathematics:A Journal of Chinese Universities 2017(02)
    • [27].图的Normalized Laplacian多项式系数[J]. 集美大学学报(自然科学版) 2016(01)
    • [28].一类具有奇性p-Laplacian-Rayleigh方程的周期正解[J]. 韩山师范学院学报 2016(03)
    • [29].Homoclinic Solutions for a Prescribed Mean Curvature Lienard p-Laplacian Equation with a Deviating Argument[J]. Journal of Donghua University(English Edition) 2016(03)
    • [30].一类奇性的p-Laplacian-Rayleigh方程的周期正解的存在性[J]. 井冈山大学学报(自然科学版) 2016(04)

    标签:;  ;  ;  ;  ;  

    分数阶Laplacian问题解的存在性与多解性
    下载Doc文档

    猜你喜欢