论文摘要
作为深度学习技术的经典模型之一,长短期记忆(LSTM)神经网络在挖掘序列数据长期依赖关系中极具优势。基于深度神经网络优化技术,本文构造了一个深层LSTM神经网络并将其应用于全球30个股票指数三种不同期限的预测研究,结果发现:①LSTM神经网络具有很强的泛化能力,对全部指数不同期限的预测效果均很稳定;②相比三种对照模型(SVR、MLP和ARIMA),LSTM神经网络具有优秀的预测精度,其对全部指数的平均预测精度在不同期限上均有提升;③LSTM神经网络能够有效控制误差波动,相比三种对照模型,其对全部指数的平均预测稳定度在不同期限上亦均有提高。鉴于LSTM神经网络在预测精度和稳定度两方面的优势,其未来在金融预测等方向将有广阔的应用前景。
论文目录
文章来源
类型: 期刊论文
作者: 杨青,王晨蔚
关键词: 神经网络,深度学习,股票指数预测
来源: 统计研究 2019年03期
年度: 2019
分类: 社会科学Ⅱ辑,经济与管理科学
专业: 金融,证券,投资
单位: 复旦大学金融研究院,复旦大学经济学院
基金: 国家自然科学基金项目“中国债务资本市场的功能,结构和发展研究”(71661137008)的资助
分类号: F831.51
DOI: 10.19343/j.cnki.11-1302/c.2019.03.006
页码: 65-77
总页数: 13
文件大小: 236K
下载量: 3040
相关论文文献
- [1].基于优化神经网络的地质灾害监测预警仿真[J]. 计算机仿真 2019(11)
- [2].基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J]. 轻工机械 2019(06)
- [3].时频联合长时循环神经网络[J]. 计算机研究与发展 2019(12)
- [4].几种典型卷积神经网络的权重分析与研究[J]. 青岛大学学报(自然科学版) 2019(04)
- [5].基于GA-BP神经网络异纤分拣机检测参数优化[J]. 棉纺织技术 2020(01)
- [6].基于集成神经网络的织物主观风格预测研究[J]. 纺织科技进展 2020(01)
- [7].试析神经网络技术在机械工程中的应用及发展[J]. 网络安全技术与应用 2020(02)
- [8].一种深度小波过程神经网络及在时变信号分类中的应用[J]. 软件 2020(02)
- [9].不同结构深度神经网络的时间域航空电磁数据成像性能分析[J]. 世界地质 2020(01)
- [10].基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报 2020(04)
- [11].基于生成对抗网络和深度神经网络的武器系统效能评估[J]. 计算机应用与软件 2020(02)
- [12].基于循环神经网络的双轴打捆机智能换挡策略研究[J]. 安徽工程大学学报 2020(01)
- [13].基于图神经网络的实体对齐研究综述[J]. 现代计算机 2020(09)
- [14].基于改进的循环神经网络深度学习跌倒检测算法[J]. 电脑编程技巧与维护 2020(03)
- [15].神经网络探索物理问题[J]. 物理 2020(03)
- [16].基于GA-BP神经网络的城市用水量预测[J]. 现代电子技术 2020(08)
- [17].基于深度神经网络的药物蛋白虚拟筛选[J]. 软件工程 2020(05)
- [18].基于轻量级神经网络的人群计数模型设计[J]. 无线电工程 2020(06)
- [19].高效深度神经网络综述[J]. 电信科学 2020(04)
- [20].含磁场耦合忆阻神经网络放电行为研究[J]. 广西师范大学学报(自然科学版) 2020(03)
- [21].基于神经网络及特征运算的老年人平衡能力分析[J]. 重庆工商大学学报(自然科学版) 2020(04)
- [22].神经网络技术在机械工程中的应用及发展探析[J]. 科技创新与应用 2020(18)
- [23].基于竞争神经网络的变电站巡视周期分类[J]. 科技创新与应用 2020(18)
- [24].基于双向循环神经网络的语音识别算法[J]. 电脑知识与技术 2020(10)
- [25].结合相似日与改进神经网络的短期光伏发电预测[J]. 广西电业 2020(04)
- [26].基于神经网络的流感大数据分析[J]. 中华医学图书情报杂志 2020(03)
- [27].长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报 2020(08)
- [28].基于门控循环单元神经网络的公交到站时间预测[J]. 南通大学学报(自然科学版) 2020(02)
- [29].鼠脑神经网络的同步辐射3D成像研究[J]. 核技术 2020(07)
- [30].基于长短记忆神经网络的短期光伏发电预测技术研究[J]. 华北电力大学学报(自然科学版) 2020(04)