分数次微分方程论文_董彦君

导读:本文包含了分数次微分方程论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:微分方程,分数,导数,不动,脉冲,稳定性,函数。

分数次微分方程论文文献综述

董彦君[1](2019)在《一类带扰动项的分数阶脉冲微分方程Dirichlet边值问题的多解性》一文中研究指出利用分数阶导数代替微分方程中的整数阶导数,可以更精确地描述某些具有记忆性质和遗传性质的实际过程.在最近的几十年里,分数阶微分方程已经逐步拓展到各个领域如:物理,控制理论,生物工程,金融理论等[1-3].此外,在许多事物和现象的发展过程中,时常会发生瞬时扰动,为了避免把模型考虑得过于理想化,就需要考虑脉冲因素的影响.本文研究了一类带扰动项的左右混合Riemann-Liouville型分数阶脉冲微分方程Dirichlet边值问题,利用对称山路引理得到该方程有无穷多个解的充分条件。(本文来源于《电子测试》期刊2019年24期)

步尚全[2](2019)在《向量值分数阶时滞微分方程的适定性 献给余家荣教授100华诞》一文中研究指出本文利用向量值H?lder连续函数空间C~α(R; X)上的算子值Fourier乘子定理,给出实轴上向量值分数阶时滞微分方程D~βu(t)=Au(t)+Fu_t+f (t), t∈R具有C~α-适定性的充分条件,其中A为某Banach空间X上的线性闭算子, F为从C([-r, 0]; X)到X的有界线性算子, r> 0固定,函数u的t平移u_t定义为u_t(s)=u(t+s)(t∈R, s∈[-r, 0]),β> 0固定, D~βu为函数u的β-阶Caputo导数.(本文来源于《中国科学:数学》期刊2019年11期)

郭育辰,舒小保[3](2019)在《关于分数阶微分方程解的存在性与Ulam稳定性探究(英文)》一文中研究指出本文主要研究了带有脉冲的无限时滞的中立型黎曼刘维尔型分数阶微分方程.通过使用不动点理论以及非紧性测度,证明了方程解的存在性和Ulam稳定性.(本文来源于《数学杂志》期刊2019年06期)

刘子婷[4](2019)在《空间分数阶偏微分方程的数值稳定性与收敛性》一文中研究指出采用非标准有限差分法构造了空间分数阶偏微分方程的差分格式,在对方程中空间分数阶导数项进行离散时,利用含有步长的分母函数去代替离散格式中的分母。证明了非标准有限差分格式是稳定且收敛的。数值实验表明分母函数的构造形式是多样的,通过使用不同的分母函数可以降低最大误差值,进而说明了非标准有限差分法的有效性。(本文来源于《佛山科学技术学院学报(自然科学版)》期刊2019年06期)

吕莉,李小龙[5](2019)在《一类分数阶微分方程周期边值问题正解的存在性》一文中研究指出运用Krasnosel'skii不动点定理研究了分数阶微分方程周期边值问题■正解的存在性.其中λ<0,μ>0,■是u(t)的Riemann-Liouville分数阶微分,f∶(0,1]×[0,+∞)→[0,+∞)为连续函数.(本文来源于《兰州文理学院学报(自然科学版)》期刊2019年06期)

李秋萍,刘艳芹,程庆涛[6](2019)在《任意阶分数阶微分方程初值问题解的存在唯一性》一文中研究指出应用Banach压缩映射原理,对任意阶的混合分数阶微分方程的带权初值问题进行研究,得到解存在且唯一的一个充分条件.(本文来源于《高师理科学刊》期刊2019年10期)

赵环环,刘有军,燕居让[7](2019)在《分数阶微分方程非振动解的存在性》一文中研究指出考虑带强迫项分数阶中立型微分方程,利用Krasnoselskii's不动点定理获得了其一个新的非振动解存在的充分条件.(本文来源于《数学的实践与认识》期刊2019年20期)

李文杰,侯伟,郑召文[8](2019)在《一类具有阻尼项的整合分数阶微分方程的新型振动准则(英文)》一文中研究指出考虑了一类具有如下形式的带有阻尼项的非线性整合分数阶微分方程的振动性■,建立了此方程的新的振动准则,并给出了两个例子,说明了主要结果的有效性.(本文来源于《曲阜师范大学学报(自然科学版)》期刊2019年04期)

薛益民,戴振祥[9](2019)在《一类非线性Riemann-Liouville分数阶微分方程耦合系统的正解》一文中研究指出文章研究一类非线性Riemann-Liouville型分数阶微分方程耦合系统正解的存在性和唯一性.借助格林函数的性质,运用Leray-Schauder抉择理论和Banach压缩映射原理,得到了该耦合系统正解的存在性和唯一性的充分条件,并举例说明了定理的有效性.(本文来源于《徐州工程学院学报(自然科学版)》期刊2019年03期)

蹇星月,刘锡平,贾梅,骆泽宇[10](2019)在《分数阶泛函微分方程边值问题的耦合上下解方法》一文中研究指出研究一类带时滞的分数阶泛函微分方程边值问题.首先将所研究的问题转化为积分方程形式,运用非线性分析理论证明了边值问题解的存在性与唯一性定理,产生了求边值问题解的单调迭代序列,并进行了误差估计.其次运用广义单调迭代技术和耦合上下解方法,获得了边值问题解存在唯一的充分条件,并确定了解的取值范围.最后给出几个具体实例,用于说明所得到的结论具有较广泛的适应性.(本文来源于《高校应用数学学报A辑》期刊2019年03期)

分数次微分方程论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文利用向量值H?lder连续函数空间C~α(R; X)上的算子值Fourier乘子定理,给出实轴上向量值分数阶时滞微分方程D~βu(t)=Au(t)+Fu_t+f (t), t∈R具有C~α-适定性的充分条件,其中A为某Banach空间X上的线性闭算子, F为从C([-r, 0]; X)到X的有界线性算子, r> 0固定,函数u的t平移u_t定义为u_t(s)=u(t+s)(t∈R, s∈[-r, 0]),β> 0固定, D~βu为函数u的β-阶Caputo导数.

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

分数次微分方程论文参考文献

[1].董彦君.一类带扰动项的分数阶脉冲微分方程Dirichlet边值问题的多解性[J].电子测试.2019

[2].步尚全.向量值分数阶时滞微分方程的适定性献给余家荣教授100华诞[J].中国科学:数学.2019

[3].郭育辰,舒小保.关于分数阶微分方程解的存在性与Ulam稳定性探究(英文)[J].数学杂志.2019

[4].刘子婷.空间分数阶偏微分方程的数值稳定性与收敛性[J].佛山科学技术学院学报(自然科学版).2019

[5].吕莉,李小龙.一类分数阶微分方程周期边值问题正解的存在性[J].兰州文理学院学报(自然科学版).2019

[6].李秋萍,刘艳芹,程庆涛.任意阶分数阶微分方程初值问题解的存在唯一性[J].高师理科学刊.2019

[7].赵环环,刘有军,燕居让.分数阶微分方程非振动解的存在性[J].数学的实践与认识.2019

[8].李文杰,侯伟,郑召文.一类具有阻尼项的整合分数阶微分方程的新型振动准则(英文)[J].曲阜师范大学学报(自然科学版).2019

[9].薛益民,戴振祥.一类非线性Riemann-Liouville分数阶微分方程耦合系统的正解[J].徐州工程学院学报(自然科学版).2019

[10].蹇星月,刘锡平,贾梅,骆泽宇.分数阶泛函微分方程边值问题的耦合上下解方法[J].高校应用数学学报A辑.2019

论文知识图

不同Hurst参数的最佳实施边界S*曲线标的资产价值(股票价格)与Hurst参数对...实例二正弦}I?应对比图3.16蚂蚁遍历有向多重图.3 例 2 的图形(1< α < 2, h= 0.025)1 系统的 Bode 图比较

标签:;  ;  ;  ;  ;  ;  ;  

分数次微分方程论文_董彦君
下载Doc文档

猜你喜欢