论文摘要
由于引起滑坡的因素复杂,传统预测方法难以得到高精度的结果。文中利用遗传算法(GA)全局搜索能力强、不易陷入局部极小值的特点对样本的初始权值和阈值进行优化处理,使得前馈型神经网络(BP)在学习和预测时能够得到一个最佳的权值和阈值,从而探索出影响滑坡的因子与边坡稳定性之间潜在的关系。从仿真结果可知:优化权值后的BP神经网络得到边坡稳定性的判对率达到100%,而随机权值BP神经网络的判对率仅为54.5%,判对率提高了45.5%;安全系数较随机权值BP神经网络的平均误差提高了6.08%。因此,优化BP神经网络的预测精度得到明显提高,在今后边坡稳定性的实际应用评价中可作为一种有效的辅助手段。
论文目录
文章来源
类型: 期刊论文
作者: 孙平定,蔡润,谢成阳,易铸
关键词: 遗传算法,神经网络,优化权值,边坡稳定性,安全系数,预测
来源: 现代电子技术 2019年05期
年度: 2019
分类: 信息科技,基础科学,工程科技Ⅱ辑
专业: 地质学,工业通用技术及设备,自动化技术
单位: 中国地震局兰州地震研究所,贵州省交通规划勘察设计研究院股份有限公司成都分公司,重庆交通大学
基金: 中国地震局地震预测研究所局所专项基本科研业务费专项(2016IESLZ04),国家自然科学基金(51779234)~~
分类号: P642.22;TP183
DOI: 10.16652/j.issn.1004-373x.2019.05.018
页码: 75-78
总页数: 4
文件大小: 1524K
下载量: 347
相关论文文献
- [1].基于优化神经网络的地质灾害监测预警仿真[J]. 计算机仿真 2019(11)
- [2].基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J]. 轻工机械 2019(06)
- [3].时频联合长时循环神经网络[J]. 计算机研究与发展 2019(12)
- [4].几种典型卷积神经网络的权重分析与研究[J]. 青岛大学学报(自然科学版) 2019(04)
- [5].基于GA-BP神经网络异纤分拣机检测参数优化[J]. 棉纺织技术 2020(01)
- [6].基于集成神经网络的织物主观风格预测研究[J]. 纺织科技进展 2020(01)
- [7].试析神经网络技术在机械工程中的应用及发展[J]. 网络安全技术与应用 2020(02)
- [8].一种深度小波过程神经网络及在时变信号分类中的应用[J]. 软件 2020(02)
- [9].不同结构深度神经网络的时间域航空电磁数据成像性能分析[J]. 世界地质 2020(01)
- [10].基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报 2020(04)
- [11].基于生成对抗网络和深度神经网络的武器系统效能评估[J]. 计算机应用与软件 2020(02)
- [12].基于循环神经网络的双轴打捆机智能换挡策略研究[J]. 安徽工程大学学报 2020(01)
- [13].基于图神经网络的实体对齐研究综述[J]. 现代计算机 2020(09)
- [14].基于改进的循环神经网络深度学习跌倒检测算法[J]. 电脑编程技巧与维护 2020(03)
- [15].神经网络探索物理问题[J]. 物理 2020(03)
- [16].基于GA-BP神经网络的城市用水量预测[J]. 现代电子技术 2020(08)
- [17].基于深度神经网络的药物蛋白虚拟筛选[J]. 软件工程 2020(05)
- [18].基于轻量级神经网络的人群计数模型设计[J]. 无线电工程 2020(06)
- [19].高效深度神经网络综述[J]. 电信科学 2020(04)
- [20].含磁场耦合忆阻神经网络放电行为研究[J]. 广西师范大学学报(自然科学版) 2020(03)
- [21].基于神经网络及特征运算的老年人平衡能力分析[J]. 重庆工商大学学报(自然科学版) 2020(04)
- [22].神经网络技术在机械工程中的应用及发展探析[J]. 科技创新与应用 2020(18)
- [23].基于竞争神经网络的变电站巡视周期分类[J]. 科技创新与应用 2020(18)
- [24].基于双向循环神经网络的语音识别算法[J]. 电脑知识与技术 2020(10)
- [25].结合相似日与改进神经网络的短期光伏发电预测[J]. 广西电业 2020(04)
- [26].基于神经网络的流感大数据分析[J]. 中华医学图书情报杂志 2020(03)
- [27].长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报 2020(08)
- [28].基于门控循环单元神经网络的公交到站时间预测[J]. 南通大学学报(自然科学版) 2020(02)
- [29].鼠脑神经网络的同步辐射3D成像研究[J]. 核技术 2020(07)
- [30].基于长短记忆神经网络的短期光伏发电预测技术研究[J]. 华北电力大学学报(自然科学版) 2020(04)