基于车载LiDAR点云联合特征的道路边界提取研究

基于车载LiDAR点云联合特征的道路边界提取研究

论文摘要

针对基于车载LiDAR点云数据的道路边界提取存在的问题,该文提出一种基于联合特征且能适应多种道路环境的道路边界提取方法。首先依据移动测量系统的航迹,按照设定宽度对道路数据进行分段,排除道路外侧无用数据;再对每段数据采用布料模拟滤波(CSF)算法分离地面点和非地面点,通过强度中值滤波去除地面点的椒盐噪声;然后计算点云局部邻域高差梯度和回波强度梯度构成的联合特征,依据设置阈值提取道路边界;最后通过欧氏距离聚类剔除部分非道路边缘点,细化道路边界,合并各段道路边界点云,得到完整的道路边界。选用代表性的城区道路、高速公路、乡村道路3种实验环境,验证了算法的鲁棒性。该研究对于扩展车载LiDAR在道路场景中的应用具有重要价值。

论文目录

  • 0 引言
  • 1 道路边界自动提取
  •   1.1 数据预处理
  •   1.2 数据滤波
  •   1.3 联合特征构建
  •   1.4 边界提取
  • 2 实验分析
  •   2.1 实验数据
  •   2.2 实验过程与结果分析
  •   2.3 道路边界提取结果分析
  • 3 结语
  • 文章来源

    类型: 期刊论文

    作者: 吕亚磊,李永强,范辉龙,李鹏鹏

    关键词: 车载,点云,道路边界,联合特征

    来源: 地理与地理信息科学 2019年01期

    年度: 2019

    分类: 基础科学,工程科技Ⅱ辑

    专业: 自然地理学和测绘学,公路与水路运输

    单位: 河南理工大学测绘与国土信息工程学院

    基金: 国家自然科学基金项目(41771491),河南省基础与前沿技术研究项目(162300410184),测绘地理信息公益性行业科研专项经费项目(201412020)

    分类号: U491;P237

    页码: 30-37

    总页数: 8

    文件大小: 6685K

    下载量: 316

    相关论文文献

    • [1].基于卷积神经网络的非等效点云分割方法[J]. 东华大学学报(自然科学版) 2019(06)
    • [2].点云智能研究进展与趋势[J]. 测绘学报 2019(12)
    • [3].基于深度学习的点云分割方法综述[J]. 计算机工程与应用 2020(01)
    • [4].点云数据预处理研究[J]. 现代信息科技 2020(02)
    • [5].基于地基激光雷达点云的植被表型特征测量[J]. 生态学杂志 2020(01)
    • [6].机载点云空洞的修复方法[J]. 北京测绘 2020(02)
    • [7].基于深度学习的零件点云分割算法研究[J]. 机电工程 2020(03)
    • [8].基于深度学习的点云语义分割综述[J]. 激光与光电子学进展 2020(04)
    • [9].基于神经网络的航空行李点云检测方法研究[J]. 电子世界 2020(07)
    • [10].基于二维截面筛选标记的点云简化方法研究[J]. 机电工程 2020(05)
    • [11].三维点云补全方法的现状和发展趋势[J]. 信息记录材料 2020(05)
    • [12].新型激光远程点云装置研究[J]. 机电信息 2020(17)
    • [13].一种简化的输电线路点云电塔自动定位方法[J]. 北京建筑大学学报 2020(03)
    • [14].一种改进的区域增长彩色3D点云分割算法[J]. 国外电子测量技术 2018(11)
    • [15].面向反光工件点云缺陷的点云增强算法[J]. 计算机辅助设计与图形学学报 2019(07)
    • [16].一种基于高度差异的点云数据分类方法[J]. 测绘通报 2018(06)
    • [17].手提激光盘煤仪点云去噪[J]. 激光杂志 2017(05)
    • [18].面向室内场景点云的对象重建[J]. 测绘通报 2017(06)
    • [19].快速点云定向数学模型实际精度分析[J]. 北京测绘 2017(04)
    • [20].基于点云几何约束的仿真安装探讨[J]. 地理空间信息 2017(09)
    • [21].基于自适应切片的点云压缩算法[J]. 工程勘察 2017(09)
    • [22].序列图像三维重构中点云精简算法的研究与改进[J]. 计算机工程与应用 2016(08)
    • [23].地面三维激光扫描点云重建技术研究[J]. 数码世界 2017(08)
    • [24].三维环境下交互式点云对象提取方法[J]. 计算机工程与应用 2019(24)
    • [25].换流站激光点云密度对土石方计算的影响[J]. 电力勘测设计 2020(01)
    • [26].融合个体识别的3D点云语义分割方法研究[J]. 黑龙江工业学院学报(综合版) 2019(12)
    • [27].机载激光点云与摄影测量点云非监督建筑物变化检测[J]. 测绘科学技术学报 2019(05)
    • [28].电力巡检点云分布式异构处理的研究[J]. 湖北电力 2019(05)
    • [29].点云重建的并行算法[J]. 计算机工程与应用 2020(06)
    • [30].基于深度学习的点云匹配[J]. 计算机工程与设计 2020(06)

    标签:;  ;  ;  ;  

    基于车载LiDAR点云联合特征的道路边界提取研究
    下载Doc文档

    猜你喜欢