离心式压缩机的喘振研究

离心式压缩机的喘振研究

(沈阳鼓风机集团股份有限公司辽宁沈阳110000)

摘要:离心式压缩机控制系统,从70年代的晶体管电路组成的电子调速器到90年代的压缩机防喘振控制系统。离心压缩机是工业生产中的关键设备,它具有排气压力高,输送流量小的优点。但离心压缩机也存在一些缺陷,如稳定工作区域窄,容易发生喘振等。喘振对压缩机的危害极大,为了保证压缩机的正常运行,必须配备控制系统来防止喘振的发生。随着计算机控制技术的发展,防喘振的控制手段和控制品质都得到了提高,但是始终存在两方面的问题需要解决。其一,经济性问题,防喘振控制导致大量气体回流,造成能量浪费。其二,防喘振控制品质问题,有些控制系统控制回路单一,没有考虑可能发生的其他因素,导致控制质量不好,不能最有效、及时地防喘振。

关键词:离心式;压缩机;喘振;分析

1导言

离心式压缩机用来压缩和输送化工生产中的各种气体而喘振是离心式压缩机工作在小流量时的不稳定流动状态,它是离心式压缩机固有的特性。轻微的喘振不会损坏压缩机但严重的喘振会使机组剧烈振动流量大幅波动很可能引起烧瓦甚至损坏压缩机件等严重事故。因此对离心式压缩机喘振机理、原因及控制方法的研究就显得很有必要。离心式压缩机组作为化工装置项目中的心脏,其顺利开车及正常运转对工程项目成功与否的重要性不言而喻。离心压缩机组是一个庞大的工程系统,喘振是离心式压缩机在小流量工作时不稳定状态,它是离心式压缩机的固有特性。严重的喘振会使整个机组剧烈震动,流量大幅波动,损坏轴瓦、转子等机组内件,还可能带来巨大的经济损失。

2压缩机的性能曲线

通常所说的离心式压缩机在一定程度上会形成叶片式旋转机械,主要是通过对于叶轮的高速运转,保证在整个叶轮中心部位气体靠近离心力的作用而不断向外延伸,当气体获得更高速度之后,就会将负压器中所形成的气体的动能不断转化为压力,这样就可以保证整个叶轮在运行的中心会存在一个负压区,气体不断吸入流道,形成一定连续的输送过程。不同的流量在一定程度上会将压力形成不一样的曲线。

3喘振的危害

喘振现象对离心式压缩机的危害极大,会缩短压缩机的使用寿命,喘振现象的危害主要表现在以下几个方面:一是喘振会使气流强烈的脉动以及周期性的震荡,会导致供气参数(流量、转速等)的大幅度上下波动,这会破坏工艺系统的稳定性运行。二是喘振现象的发生会使叶片产生强烈的震动,叶轮的应力也会大大地增加,使噪声加剧。三是喘振会加剧轴颈和轴承的磨损,破坏润滑油膜的稳定性,导致轴承合金产生疲劳裂纹,甚至烧毁轴承。四是喘振现象会致使压缩机机件密封及轴封遭受损坏,导致压缩机的工作效率降低,甚至造成火灾、爆炸等重大事故。五是喘振会致使动静部件之间的摩擦与碰撞,使压缩机的轴弯曲变形,严重时会产生轴向窜动,破坏叶轮;六是喘振会影响与压缩机相连的其他设备的正常运行,干扰操作人员的正常工作,使部分测量仪器仪表准确性降低,甚至是失灵。一般情况下,机组的压力比、排气压力、气体密度和排气量越大,喘振现象就会越严重,其危害就越大。

4离心式压缩机控制系统的现状

离心压缩机的基本控制要求是在压缩机安全平稳运行的情况下,充分利用压缩机的工作区域,在工艺要求的压力和流量范围内,工况稳定可靠,操作方便,自动化程度高。控制系统尽可能地将压缩机系统的工作状态实时展现在操作人员面前,便于操作人员了解,并对运行数据进行存贮,以备查询和分析。当由于某些原因导致压缩机即将出现不稳定时,控制系统应该能及时预测到不稳定性的发生,通知操作人员,并针对不同情形,自动采取措施,做出及时有力的动作,确保压缩机回到正常的工作轨道上来。

4.1控制系统硬件平台的选择

目前国内仍有很多企业的压缩机控制系统以经典控制理论为基础,采用模拟调节器,对其运行中的有关参数如排气量、排气压力,分别作必要的调节,构成单回路的并联控制系统,控制件也多为机械式的双位或比例调节器以及一些保护继电器。这种控制系统模式虽然能对参数进行一定的调节,以保证装置正常安全运行,实现必要的工艺要求,但调节器难以适应大的负荷变化和工况变化,更顾及不到机组总体最佳的节能运行。随着计算机技术的迅猛发展,有可能利用微信号处理机或计算机来完成更高的控制要求,在许多情况下可以利用可编程控制器PLC来实现。

4.2控制系统软件开发平台的选择

很多国外进口的压缩机组,供货商都会一并提供配套的控制系统,针对性比较强,控制效果比较理想。也可以购买第三方厂家的通用工控组态软件来直接进行上位机监控系统的开发,这样可以缩短开发周期,但无疑增加了成本。还可以选择自行设计开发专用于离心压缩机组控制的软件平台,这需要开发人员对压缩机组的特性有比较好的了解,需要较长的开发时间,但是适当降低了成本。

4.3控制策略的选择

这是压缩机控制系统设计中最重要的问题。在防喘振数字直接控制中,最基本的方法仍然是采用最小流量控制,但是可以针对不同的情形采用不同的对策。近年来发展起来的模糊控制、鲁棒和神经网络控制技术,为压缩机的智能控制奠定了基。离心压缩机组工艺流程回路复杂,需要监控的参数众多,涉及到水路、油路、气路的压力、温度和流量控制,以及机组的防喘振控制,机组振动和温度监控,对汽轮机驱动的压缩机机组来说,更是集汽轮机控制、压缩机性能控制和防喘振控制系统等多个系统于一体,显然,传统的控制方法难以满足上述控制要求,因此采用先进PDI控制技术是离心压缩机控制的必然选择。

5针对喘振的防止措施和控制有如下措施:

一是在压缩机的出口管线上可设置自动防喘振控制阀,而且防喘振控制阀的尺寸和型号应根据压缩机的操作条件和性能来选取,除此之外,防喘振控制阀的变送器应该尽量安装在离阀门较近的地方,以缩短反应时间。二是采用固定极限流量的防喘振系统,使压缩机的流量始终高于某一定值流量,从而避免进入喘振区运行,这种控制系统较为简单,而且实用的仪表较少。三是定期的对压缩机校验防喘振控制阀、安全阀、压力以及流量联锁仪表,以保证其整定值的准确性、动作灵敏。另外,还要定期对压缩机的出口单向阀进行维护,以确保其灵活好用。四是要全面提升压缩机的操作质量,重点提高岗位错做

人员的综合素质。操作人员在机组启动前,要对压缩机的尽心各项检查工作,确保无误后再启动。在机组启动后,对系统的升压要平稳并且缓慢,尽量减少工况的大幅度波动。联合检查和维护要到位,并且要加强对机组运行状态的检测以及对压缩机的故障隐患的排查。五是在压缩机工作运行期间,通常会使叶片、叶轮、转子产生腐蚀和结构,这会导致压缩机的特性曲线发生变化,从而致使喘振线的位移,当喘振线位移范围过大时,会使最初的防喘振线无法对防止喘振产生作用。所以,应每隔一段时间验证一次原喘振曲线的准确性,若变化较大需重新改正。

6结论

总而言之,对于离心率压缩机靠近喘振点最好的或者说是最直接的控制方法就是要打开防喘振控制阀,这样在一定程度上通过转速的调节,将整个工作点的距离进行一定的衡量,增加压缩机产生的流量,就可以保证整个压缩机在工作的时候可以处在稳定的区域。根据压缩机的出口不断加强对于转速的调节,可以加大对于能源的保护,产生节能的效果。如果发生了喘振现象,就需要加快对于喘振现象的推测和预判,这样可以提前加以控制,避免这种现象的发生。

参考文献:

[1]田帅.离心式压缩机装置的控制系统概述[J].中国石油和化工标准与质量,2018,38(08):76-77.

[2]吴佳欢.离心式压缩机的防喘振控制设计探讨[J].石油化工自动化,2016,52(05):33-36.

[3]陈浩然,陈奎,赵冬,孟飞,林凡.离心式压缩机防喘振方法的应用现状[J].重庆理工大学学报(自然科学),2015,29(03):42-47.

[4]万鹤鸣.浅谈离心式压缩机喘振故障分析[J].化学工程与装备,2014(01):107-109.

[5]黄磊.离心压缩机喘振的预防及解决措施[J].科技与企业,2011(14):182.

[6]杨春生.离心式压缩机的喘振及防喘振控制[J].石油化工设计,1999(03):1-4+9-63.

标签:;  ;  ;  

离心式压缩机的喘振研究
下载Doc文档

猜你喜欢