布里渊论文_商景诚,吴涛,杨传音,毛崎波,何兴道

导读:本文包含了布里渊论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:布里,光纤,时域,瑞利,光学,大气,相移。

布里渊论文文献综述

商景诚,吴涛,杨传音,毛崎波,何兴道[1](2019)在《基于自发瑞利-布里渊散射测量空气的温度》一文中研究指出瑞利-布里渊散射的散射截面比拉曼散射大,因而其在大气散射中实现对大气对流层温度廓线的准确测量方面具有一定的优势,同时利用瑞利-布里渊散射实现高压环境下温度的准确测量对于航天飞机主引擎状态的监测和超燃发动机燃烧室参数测量方面具有重要意义。基于自发瑞利-布里渊散射分别采用反卷积方法和卷积方法来实现空气在不同压力条件下的温度反演,研究引起温度反演误差的原因,并对利用两种方法获得的温度测量结果进行了比较。在利用基于维纳滤波器的反卷积方法对测量光谱直接处理实现温度反演之前,首先利用反卷积方法对由自发瑞利-布里渊散射模型与仪器函数卷积得到的卷积光谱进行处理获得反卷积光谱,将反卷积光谱与未经卷积的理论计算光谱进行比较实现温度反演,并基于温度反演误差小于1.0 K,光谱拟合误差相对较小,光谱处理时间短的参数优化原则对反卷积方法中的关键参数奇异值迭加数进行了优化处理,得到优化后的奇异值迭加数为150。随后实验测量了由532 nm波长的连续激光激发的纯净空气在温度为294.0 K,压强为1~7 bar条件下的自发瑞利-布里渊散射光谱,并结合理论计算光谱和最小χ~2值原理对光谱信号散射角进行优化,优化值为90.7°,同时利用反卷积和卷积方法分别对实验测量光谱进行处理实现空气在不同压强下的温度反演。实验结果表明反卷积方法在一定程度上可以提高信号光谱分辨率,而且利用反卷积和卷积方法均可以实现空气在不同压力(1~7 bar)条件下温度的准确测量,温度测量的最大误差均小于2.0 K;利用反卷积方法的温度反演结果随着气体压强的增大随之得到改善,实现温度反演测量所需要的光谱处理时间减少;在空气压强较低(≤2 bar)时,由卷积方法获得的温度反演结果要优于反卷积方法,压强较高(>2 bar)时,两种方法的温度反演结果相近,其绝对误差均小于1.0 K。通过分析得到引起两种方法温度反演误差的原因主要包括环境温度的波动(±0.2 K),散射角存在一定的不确定度以及气体的各已知参数的微量偏差对温度测量结果的影响以及反卷积对光谱噪声的非线性放大引起的光谱扰动对温度测量结果的影响。在实验中可以通过提高测量光谱的信噪比、提高散射角的优化精度及改善反卷积方法来获得更加准确的参数测量结果。(本文来源于《光谱学与光谱分析》期刊2019年10期)

王婷,田凤,汤文青,崔岩松[2](2019)在《分布式光纤温度传感系统的布里渊频移提取方法》一文中研究指出基于布里渊光时域分析(BOTDA)的分布式光纤传感系统被广泛用于测量外界环境的温度、应力等信息。为了进一步提高分布式光纤传感系统的测量精度与速度,提出一种基于自适应梯度下降算法的布里渊频移提取方法,搭建了24.4km基于BOTDA的分布式温度传感系统,并进行实验验证。结果表明,与传统莱文伯-马奈特洛伦兹拟合法相比,本文方法能够快速、准确地提取出布里渊频移,对提高基于BOTDA的分布式温度传感系统的测量精度具有重要意义。(本文来源于《激光与光电子学进展》期刊2019年17期)

康佳乐[3](2019)在《气体瑞利-布里渊散射包络谱线解耦方法及实验研究》一文中研究指出激光雷达在大气探测中以其高探测灵敏度、高时间和空间分辨率的特点,逐渐成为大气主动遥感的有力工具,基于瑞利散射的激光雷达大气温度廓线探测以其高信噪比的特点引起了研究员的广泛关注。但是通常激光雷达回波信号中除去由温度引起的瑞利散射以外,还存在由压力引起的布里渊散射,二者混合迭加形成瑞利-布里渊散射包络谱,使得基于瑞利散射的激光雷达大气温度廓线探测出现困难。目前公认描述瑞利-布里渊散射包络谱线最好的数学模型为S6模型,但是模型不存在解析解,且仅描述瑞利-布里渊散射包络光谱整体外部廓线,无法分离由温度引起的瑞利散射与压力引起的布里渊散射,降低了大气参量的反演精度。为提高激光雷达大气温度的绝对探测精度,文中采用叁个高斯函数线性迭加的方式描述瑞利-布里渊散射包络谱外部廓线,且该模型中拥有独立的瑞利散射解析与布里渊散射解析式,能够解耦包络谱线中瑞利散射谱线与布里渊散射谱线。模型可以实现反演气体的温度与压力的功能,通过选取瑞利-布里渊散射包络谱线上四个离散的信息点带入模型中求解未知参量后,利用得到与温度相关的瑞利散射谱线与压力相关的布里渊散射谱线分别计算获得气体的温度值与压力值。为验证模型在激光雷达探测大气温度与压力过程中的应用,使用气体模拟散射池模拟不同的气体温度与压力环境,搭建以扫描式法布里-珀罗干涉仪作为核心分光光路,分别探测气体不同温度和压力状态下的瑞利-布里渊散射包络谱线。利用解耦模型完成实验获得的气体瑞利-布里渊散射包络谱线温度与压力的反演,并解耦包络谱线得到独立的瑞利散射谱线与布里渊散射谱线。最终,使用实验谱线反演获得的温度值与实验中实测温度值之间的绝对误差为±0.60K,反演获得的压力与实验中实测压力值之间的绝对误差为±1.00kPa。结果表明,高斯模型可以实现气体瑞利-布里渊散射包络谱线的解耦,能够准确解耦包络谱中瑞利散射谱线与布里渊散射谱线并实现气体温度与压力的反演,为激光雷达探测大气瑞利-布里渊散射谱线提供可行的解耦方法。(本文来源于《西安理工大学》期刊2019-06-30)

邓怀勇[4](2019)在《利用边缘技术探测进行激光布里渊散射雷达频移分析》一文中研究指出针对传统激光布里渊散射雷达频移分析方法存在效率低下的问题,利用边缘技术探测对传统分析方法进行改进。首先借助边缘探测技术获取初始激光束,并分析示波器上的频线展宽光谱,得出激光的初始信息以及信号强度的关系式,在此基础上建立布里渊散射雷达回波信号方程,结合信号能量与布里渊散射频移的表达式,得出雷达频移的分析结果与相应的取值范围。经过与传统分析方法的对比实验,发现2种方法得到相似分析结果时所消耗的时间不同,改进后的方法比传统方法节省44 s,因此具有更高的分析效率。(本文来源于《舰船科学技术》期刊2019年12期)

范峰,王加彬,朱文武,胡晶晶,谷一英[5](2019)在《基于受激布里渊散射和耦合型双环的可调谐光电振荡器》一文中研究指出提出了一种基于受激布里渊散射和耦合型双环的可调谐光电振荡器.该光电振荡器将受激布里渊散射和耦合型双环结构相结合,利用受激布里渊散射的窄带增益谱选择振荡频率,实现微波信号的频率可调谐.通过耦合型双环结构,有效地抑制了微波信号的边模,降低了微波信号的相位噪声,提高了微波信号的频率和功率稳定性.实验结果表明,该结构的光电振荡器可以产生2GHz到18GHz的微波信号,边模抑制比优于60dB,相位噪声在10kHz频偏处低于-95dBc/Hz,在实验室环境下10GHz微波信号30min内频率漂移小于0.3ppm,功率漂移低于0.2dB.(本文来源于《光子学报》期刊2019年08期)

吴涛,杨传音,商景诚,何兴道,陈忠平[6](2019)在《基于自发瑞利-布里渊散射的相关参数误差对气体温度准确测量的影响》一文中研究指出仿真了氮气在温度为298 K,压强为20265.0~810600.0 Pa下的自发瑞利-布里渊散射光谱,利用仿真光谱研究了法布里-珀罗干涉仪的仪器函数线宽、散射角、气体体黏滞系数、压强参数误差,以及存在气溶胶时米散射干扰对气体温度反演结果的影响。仿真结果显示:在仪器函数线宽偏差≤5 MHz,散射角偏差≤0.2°,体黏滞系数偏差≤0.2×10~(-5) kg·m~(-1)·s~(-1),以及压强相对误差≤3%的条件下,单个参数偏差导致的温度反演的最大绝对误差为1.7 K。米散射的相对强度为0.3~2.5时,温度反演的误差通常低于2 K。此外,还开展了在温度为298 K,压强在70927.5~709275.0 Pa范围内的侧向90°的氮气自发瑞利-布里渊散射实验,经参数优化后,根据测量光谱对温度进行反演,结果表明:实验结果与仿真分析结论具有较好的一致性,在与仿真相同的参数误差条件下,实验获得的温度绝对误差小于1.2 K。该研究对实现不同压强条件下温度的高精度绝对探测及气体状态的准确分析具有一定的参考意义。(本文来源于《光学学报》期刊2019年09期)

尚秋峰,秦文婕,胡雨婷[7](2019)在《基于Armijo线搜索的布里渊散射谱图像降噪算法》一文中研究指出为提高布里渊光时域分析(BOTDA)系统的信噪比,减少累计平均次数,改善实时性的同时保障测量精度,提出了基于Armijo线搜索的BOTDA散射谱图像降噪算法。该算法从能量扩散的角度利用偏微分方程的各向异性保证降噪图像具有良好的边缘保持特性,基于图像的局部特征提高了传感系统的测量精度。运用Armijo回溯线搜索法自适应选取最速下降步长,对256次累计平均的BOTDA实验数据进行降噪处理,只需两步迭代,即可达到最佳降噪效果,有效减少了数据采集时间,提高了系统的实时性。(本文来源于《中国激光》期刊2019年09期)

王旭[8](2019)在《少模光纤受激布里渊散射效应研究》一文中研究指出由于单模光纤的非线性香农极限,人们尝试寻求很多种方法提高通信容量,模分复用技术作为其中一种,受到广泛关注。但由于多模光纤模式之间严重的色散效应,少模光纤更加容易控制的优势逐渐体现出来。受激布里渊散射(SBS)作为光纤内部的一种非线性效应,应用于多个领域,包括传感器、光存储、光纤激光器等。SBS的相频特性可以用于补偿光纤中另一种非线性效应四波混频(FWM)相位失配,以此提高它的效率。FWM能广泛应用于光放大、模式转换等研究方向。因此基于少模光纤SBS的幅频特性以及相频特性研究具有重要的意义。本文基于少模光纤对于SBS效应进行了详细的理论研究与仿真计算,并利用其相移响应补偿FWM相位失配。具体工作与成果如下:(1)基于单模光纤SBS动力学特性以及波动光学理论,推导了少模光纤不同模式下泵浦光与信号光随时空演化的耦合振幅方程组,并由信号光的耦合振幅方程,演化出信号光的布里渊复数增益因子g_c。定义了影响不同光波与声波模式耦合效率的声光耦合系数,依据复数增益因子g_c和不同模式的声光耦合系数,得到了布里渊增益谱(BGS)和布里渊相移谱(BPS)的数学模型。(2)对于不同泵浦光-信号光模式组合,BGS和BPS有着不同的耦合效率。若以LP_(01)-LP_(01)泵浦-信号光模式对组合为归一化基准,平行耦合LP_(11a)-LP_(11a)模式对BGS增益峰值约为它的89.7%,模间耦合LP_(01)-LP_(11)模式对BGS增益峰值约为它的57.9%,垂直耦合LP_(11a)-LP_(11b)模式对BGS增益峰值约为它的29.8%,这一结果对于各个模式组合能产生的最大相移也相同。以上结果表明LP_(01)模与LP_(11)模更趋向于模内SBS过程,而且LP_(11)模式的模内SBS效应主要为平行耦合方式。此外,通过对不同泵浦光-信号光模式组合的声光耦合系数计算,发现参与SBS效应的声波主要为基模以及各低阶模式,相对较高阶的声波模式造成了总BGS线宽增加。(3)分别对叁种FWM过程的相位匹配条件进行了理论计算,计算结果表明其中一种在实际条件下容易受到外界环境的波动而改变其相位失配因子,从而很难做到有效控制FWM效率。然后对另外两种FWM的相位失配采取补偿,利用不同模式的SBS泵浦光对FWM信号光产生的相移响应,使得最终的模间FWM过程相位失配因子趋于零。结果表明,两种FWM过程产生的相位失配因子的最大绝对值都相同,约为1.3×10~5km~(-1)-1.6×10~5km~(-1),若SBS泵浦光以LP_(01)模式注入,最大约能产生1×10~5km~(-1)的补偿,SBS泵浦光以LP_(11)模式注入,最大约能产生6×10~4 km~(-1)的补偿。(本文来源于《桂林电子科技大学》期刊2019-06-02)

李丽君[9](2019)在《少模光纤中受激布里渊散射慢光的研究》一文中研究指出本文利用全矢量有限元法,分析了少模光纤受激布里渊散射过程中光场和声场的特性,利用光波和声波的耦合理论得出了不同条件下各模式的慢光传输特性,并通过该特性分别讨论了掺杂浓度、温度和应力对少模光纤中受激布里渊散射慢光的影响。主要研究内容和结论如下:1.在稳态小信号解下,根据受激布里渊散射的声光耦合方程推导出少模光纤中时间延迟量的表达式,给出了慢光研究的理论基础。利用有限元法计算了少模光纤中不同模式对(泵浦波-Stokes)下的布里渊慢光,模拟了泵浦功率、有效传输长度对各模式对的布里渊阈值、时间延迟量及脉冲展宽因子的影响。结果表明,少模光纤中不同模式对的布里渊慢光特性不同;布里渊阈值随光纤有效长度的增大而减小,但随模式阶数的增大而变大;泵浦功率及有效传输长度越大,各模式对的时间延迟量、脉冲展宽越大,且当输入泵浦功率相同时,模内受激布里渊散射产生的慢光时间延迟量及脉冲展宽均大于模间。输入泵浦功率为0.5 W,光纤有效长度为1 km时,得到LP_(01)-LP_(01)、LP_(11)-LP_(11)和LP_(01)-LP_(11)模式的时间延迟量分别为643.7 ns、362.6 ns和213.2 ns,对应的展宽因子分别为1.346、1.207和1.126。通过对少模光纤中受激布里渊散射慢光特性的分析,得到了较大时延量及较小脉冲形变的少模光纤,该结论从理论上为设计慢光器件和提高传输容量指明了一个可行的研究方向。2.研究了不同掺杂浓度对少模光纤中受激布里渊散射慢光特性的影响,模拟了不同掺杂条件下LP_(01)模和LP_(11)模的有效模场面积、布里渊阈值、时间延迟量及脉冲展宽因子的变化。结果表明,掺杂会对各模式的布里渊慢光特性产生不同影响,相比LP_(01)模,掺杂对LP_(11)模的影响更大。输入泵浦功率一定时,掺杂浓度越大,LP_(01)模和LP_(11)模的有效模场面积和布里渊阈值越小,但LP_(01)模和LP_(11)模的时间延迟量及脉冲展宽越大;LP_(01)模的时间延迟量大于LP_(11)模的时间延迟量,但LP_(11)模的时间延迟量随掺杂浓度变化更灵敏。其他参数一定时,可通过改变掺杂浓度来获得各模式下可调的时间延迟量,该工作对光缓存器件的研究具有重要的理论意义。3.分别研究了不同温度和应力对少模光纤中LP_(01)模和LP_(11)模的受激布里渊散射慢光特性的影响,计算了各模式的有效折射率、有效模场面积、布里渊阈值、时间延迟量及脉冲展宽因子分别随温度(-20℃至80℃)和应力(0??到2000??)的变化。结果表明,LP_(01)模和LP_(11)模的慢光特性随温度和应力的改变均有明显变化,且LP_(11)模的变化更为明显。输入泵浦功率一定时,LP_(01)模和LP_(11)模的有效模场面积和布里渊阈值随温度的升高、应力的增大而减小,对应模式的时间延迟量和脉冲展宽因子随温度的升高、应力的增大而增大,且LP_(11)模对温度和应力的变化更为敏感。结论对设计基于受激布里渊散射慢光的少模光纤温度和应力传感器具有理论指导作用。(本文来源于《兰州理工大学》期刊2019-06-02)

董悦[10](2019)在《基于模式干涉和受激布里渊效应的光纤传感器研究》一文中研究指出传感技术是物联网的核心,其发展水平决定着物联网的发展水平,同时也是衡量一个国家信息化程度、科技创新与发展的重要标志。近年来,光纤传感器在生物化学、医疗、环境检测、军事安防等领域发挥着重要作用,可以利用光纤传感器实现对温度、应力、折射率、液位、磁场等参量单一或同时测量。和传统的电传感器相比,光纤传感器具有结构紧凑、耐腐蚀、耐高温,抗电磁干扰及灵敏度高等优点,其在小型化、智能化的传感网络中具有极大的优势。随着光纤制作技术的进步,基于特种光纤的光纤传感器展现出其优良的性能。本论文结合光纤传感器的高灵敏度、微型化、多参量集成等发展需求,在前人工作的基础上,对基于特种光纤的模式干涉结构传感器和基于受激布里渊散射效应的光纤传感器进行了理论和实验研究。主要研究成果如下:1.实验制作了一种少模D型光纤,对其模式特性进行了分析。研究了外界环境折射率和光纤研磨深度对D型光纤模式有效折射率的影响,为高灵敏度光纤传感器的制作提供途径。提出了一种新型基于D型光纤和布拉格光栅的折射率和温度传感器。结合光纤光栅的温度传感特性,可以通过同时监测模式干涉结构的下陷峰波长和光纤光栅布拉格波长的漂移实现折射率和温度的同时测量。实验结果显示,在折射率测量范围为1.333到1.428时,此结构传感器的折射率灵敏度为-31.79nm/RIU。当光谱仪分辨率为O.01nm时,折射率和温度的测量精度分别为1.4×10-3RIU和1.7℃。2.提出了一种无芯光纤-D型光纤-无芯光纤结构的液位传感器。利用D型光纤中高阶包层模式对外界环境参量变化更加敏感的原理,监测传感结构传输光谱下陷峰波长随D型光纤浸没在待测液体中长度的变化,实现液位的高灵敏度测量。在待测液体折射率分别为1.333、1.355和1.377时,对应的液位灵敏度为191.89pm/mm、208.11pm/mm和213.80pm/mm。进一步实验研究了传感结构的温度特性,在液体折射率为1.333的情况下,温度和液位的交叉敏感系数为-0.128mm/℃。此结构的液位传感器具有结构紧凑、制作简单等优点,适用于高灵敏度的液位测量。3.提出了一种基于D型光纤模式干涉结构和磁流体的磁场传感器。利用磁流体折射率随外界磁场强度改变的特性,传感器的传输光谱发生漂移实现磁场强度的测量。同时监测传输光谱中两个下陷峰波长的漂移,实现对磁场和温度进行同时传感。该传感器的磁场和温度灵敏度实验结果分别为99.68pm/Oe和-77.49pm/℃C。对比了此传感器与已报道的同类型传感器,此结构具有高灵敏度、结构紧凑和成本低廉等优点,有潜力应用于磁场和温度同时传感领域。4.提出了一种基于无芯光纤-单模光纤-保偏光纤-单模光纤-无芯光纤结构的扭转传感器。理论分析了无芯光纤长度对传感结构传输光谱的影响,并进行实验验证。扭转传感实验结果表明此传感结构传输光谱的消光比随光纤扭转角度发生改变。在扭转角度为-240°到360°范围内,扭转灵敏度为0.34dB/(rad/m)。进一步通过监测传输光谱下陷峰的波长漂移实现温度测量,实验得到温度灵敏度为41.89pm/℃。5.提出了一种基于受激布里渊散射的M型折射率分布单模光纤用于温度和应力同时测量。通过仿真计算研究了此光纤中的纵向声学模式,将此光纤与普通单模光纤性质进行对比,计算结果表明此光纤的布里渊增益谱中存在多个布里渊增益峰,分别对应不同阶数的声学模式。进一步研究了此光纤布里渊增益谱中的两阶布里渊增益峰对温度和应力的响应特性,温度和应力的测量精度分别为0.47℃和12.3με。(本文来源于《北京交通大学》期刊2019-06-01)

布里渊论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

基于布里渊光时域分析(BOTDA)的分布式光纤传感系统被广泛用于测量外界环境的温度、应力等信息。为了进一步提高分布式光纤传感系统的测量精度与速度,提出一种基于自适应梯度下降算法的布里渊频移提取方法,搭建了24.4km基于BOTDA的分布式温度传感系统,并进行实验验证。结果表明,与传统莱文伯-马奈特洛伦兹拟合法相比,本文方法能够快速、准确地提取出布里渊频移,对提高基于BOTDA的分布式温度传感系统的测量精度具有重要意义。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

布里渊论文参考文献

[1].商景诚,吴涛,杨传音,毛崎波,何兴道.基于自发瑞利-布里渊散射测量空气的温度[J].光谱学与光谱分析.2019

[2].王婷,田凤,汤文青,崔岩松.分布式光纤温度传感系统的布里渊频移提取方法[J].激光与光电子学进展.2019

[3].康佳乐.气体瑞利-布里渊散射包络谱线解耦方法及实验研究[D].西安理工大学.2019

[4].邓怀勇.利用边缘技术探测进行激光布里渊散射雷达频移分析[J].舰船科学技术.2019

[5].范峰,王加彬,朱文武,胡晶晶,谷一英.基于受激布里渊散射和耦合型双环的可调谐光电振荡器[J].光子学报.2019

[6].吴涛,杨传音,商景诚,何兴道,陈忠平.基于自发瑞利-布里渊散射的相关参数误差对气体温度准确测量的影响[J].光学学报.2019

[7].尚秋峰,秦文婕,胡雨婷.基于Armijo线搜索的布里渊散射谱图像降噪算法[J].中国激光.2019

[8].王旭.少模光纤受激布里渊散射效应研究[D].桂林电子科技大学.2019

[9].李丽君.少模光纤中受激布里渊散射慢光的研究[D].兰州理工大学.2019

[10].董悦.基于模式干涉和受激布里渊效应的光纤传感器研究[D].北京交通大学.2019

论文知识图

功率与波长分别为10dBm和1566nm时...两对Dirac点两两缩并的示意图和V原子的3d轨道投影态密度,(a)...能带折迭和杂质掺杂导致的电子性质奇...石墨烯/过渡金属/碳化硅体系的能带结...(a)正六边形晶格的布里渊区,(b...

标签:;  ;  ;  ;  ;  ;  ;  

布里渊论文_商景诚,吴涛,杨传音,毛崎波,何兴道
下载Doc文档

猜你喜欢