论文摘要
对于几类非线性的发展型方程——非线性抛物方程、非线性Schr?dinger方程、非线性Sobolev方程、非线性双曲方程,本文从协调有限元方法、非协调有限元方法、混合有限元方法等不同角度,利用不同技巧深入系统地研究了其线性化的全离散格式的构造、无网格比约束下的超逼近和超收敛分析.
论文目录
文章来源
类型: 期刊论文
作者: 石东洋,王俊俊
关键词: 非线性发展方程,线性化的全离散格式,无网格比,超逼近及超收敛性
来源: 数学杂志 2019年01期
年度: 2019
分类: 基础科学
专业: 数学
单位: 郑州大学数学与统计学院,平顶山学院数学与统计学院
基金: 国家自然科学基金(11671369,11271340)
分类号: O241.82
DOI: 10.13548/j.sxzz.2019.01.001
页码: 1-19
总页数: 19
文件大小: 338K
下载量: 112
相关论文文献
- [1].一类非线性发展方程组的隐式解析解[J]. 大连民族大学学报 2016(03)
- [2].两参数非线性发展方程的奇摄动尖层解(英文)[J]. 数学杂志 2017(02)
- [3].几种广义非线性发展方程的新解[J]. 数学杂志 2016(05)
- [4].(3+1)维非线性发展方程的显式解[J]. 聊城大学学报(自然科学版) 2013(03)
- [5].非线性发展方程的新精确解(英文)[J]. 西北师范大学学报(自然科学版) 2012(02)
- [6].(2+1)维非线性发展方程的对称约化和显式解[J]. 量子电子学报 2012(04)
- [7].两个非线性发展方程组的精确解[J]. 河南科技大学学报(自然科学版) 2009(04)
- [8].两类非线性发展方程解的爆破[J]. 广东技术师范学院学报 2019(03)
- [9].一类扰动非线性发展方程的孤立子同伦映射行波渐近解[J]. 安徽师范大学学报(自然科学版) 2017(03)
- [10].Broer-Kaup-Kupershmidt方程的新精确解[J]. 量子电子学报 2012(02)
- [11].几个非线性发展方程的精确解[J]. 数学的实践与认识 2017(19)
- [12].两类非线性发展方程的扩展G'/G法精确解[J]. 洛阳师范学院学报 2015(02)
- [13].一类非线性发展方程的整体吸引子[J]. 曲靖师范学院学报 2012(06)
- [14].构造变系数非线性发展方程精确解的一种方法[J]. 物理学报 2009(04)
- [15].非线性发展方程非局部对称及精确解[J]. 聊城大学学报(自然科学版) 2018(01)
- [16].利用改进的(G'/G)函数法求解非线性发展方程的行波解[J]. 吉林大学学报(理学版) 2012(03)
- [17].一类扰动非线性发展方程的类孤子同伦近似解析解[J]. 物理学报 2009(12)
- [18].两类非线性发展方程的新的显式解[J]. 数学的实践与认识 2008(20)
- [19].带有非线性阻尼的非线性发展方程的时间依赖吸引子(英文)[J]. 四川大学学报(自然科学版) 2017(05)
- [20].一类非线性发展方程的显式精确解[J]. 数学的实践与认识 2013(09)
- [21].利用同伦摄动法数值模拟两个非线性发展方程的行波解(英文)[J]. 内蒙古大学学报(自然科学版) 2010(03)
- [22].一类强非线性发展方程孤波变分迭代解法[J]. 物理学报 2009(11)
- [23].改进的非线性发展方程解的离散研究[J]. 数学学习与研究 2015(11)
- [24].具有控制项的弱非线性发展方程行波解[J]. 物理学报 2011(05)
- [25].微结构固体材料中非线性发展方程孤波解的稳定性[J]. 内蒙古大学学报(自然科学版) 2012(04)
- [26].非线性长波方程组的精确解[J]. 内蒙古大学学报(自然科学版) 2009(02)
- [27].非线性发展方程的初值随机化问题研究[J]. 河南师范大学学报(自然科学版) 2020(01)
- [28].两个非线性发展方程的精确解[J]. 科学技术创新 2020(18)
- [29].一类非线性发展方程的整体吸引子[J]. 太原理工大学学报 2018(02)
- [30].一类非线性发展方程的耦合周期解[J]. 太原师范学院学报(自然科学版) 2012(04)
标签:非线性发展方程论文; 线性化的全离散格式论文; 无网格比论文; 超逼近及超收敛性论文;