论文摘要
智能电表的迅速普及与应用引起电力消耗数据(即智能电网数据)的激增,这不仅给数据的存储与通信带来了挑战,同时也增加了对数据进行分析的难度。另外,由于生产性质和经营方式的不同,工厂的用电状态往往比较复杂。基于传统经验的人工识别不能满足实际应用的需求,该文研究了一种基于神经网络的工厂用电状态自动识别方法。首先,对采集于真实应用场景的电网大数据进行必要的预处理,包括数据的合并、清洗、标准化、打标和抽样;然后,基于预处理的电网数据构建神经网络模型用于对工厂用电状态的自动识别;最后,对提出的基于神经网络的工厂用电状态识别方法进行实验验证,证实了该方法的合理性和有效性。通过对工厂用电状态的准确识别,能够帮助供电公司指导企业进行错峰用电,进而有效缓解电力供给不平衡的问题,以达到对电能合理开发和利用的目的。
论文目录
文章来源
类型: 期刊论文
作者: 秦红莲,何玉林,黄哲学
关键词: 人工智能,神经网络,智能电表,电网数据,用电状态
来源: 集成技术 2019年04期
年度: 2019
分类: 信息科技,工程科技Ⅱ辑
专业: 电力工业,自动化技术
单位: 深圳大学计算机与软件学院大数据技术与应用研究所,深圳大学大数据系统计算技术国家工程实验室
基金: 国家重点研发计划项目(2017YFC0822604-2),中国博士后科学基金项目(2016T90799),深圳大学新引进教师科研启动项目(2018060)
分类号: TM933.4;TP18
页码: 42-51
总页数: 10
文件大小: 1790K
下载量: 107
相关论文文献
- [1].基于优化神经网络的地质灾害监测预警仿真[J]. 计算机仿真 2019(11)
- [2].基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J]. 轻工机械 2019(06)
- [3].时频联合长时循环神经网络[J]. 计算机研究与发展 2019(12)
- [4].几种典型卷积神经网络的权重分析与研究[J]. 青岛大学学报(自然科学版) 2019(04)
- [5].基于GA-BP神经网络异纤分拣机检测参数优化[J]. 棉纺织技术 2020(01)
- [6].基于集成神经网络的织物主观风格预测研究[J]. 纺织科技进展 2020(01)
- [7].试析神经网络技术在机械工程中的应用及发展[J]. 网络安全技术与应用 2020(02)
- [8].一种深度小波过程神经网络及在时变信号分类中的应用[J]. 软件 2020(02)
- [9].不同结构深度神经网络的时间域航空电磁数据成像性能分析[J]. 世界地质 2020(01)
- [10].基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报 2020(04)
- [11].基于生成对抗网络和深度神经网络的武器系统效能评估[J]. 计算机应用与软件 2020(02)
- [12].基于循环神经网络的双轴打捆机智能换挡策略研究[J]. 安徽工程大学学报 2020(01)
- [13].基于图神经网络的实体对齐研究综述[J]. 现代计算机 2020(09)
- [14].基于改进的循环神经网络深度学习跌倒检测算法[J]. 电脑编程技巧与维护 2020(03)
- [15].神经网络探索物理问题[J]. 物理 2020(03)
- [16].基于GA-BP神经网络的城市用水量预测[J]. 现代电子技术 2020(08)
- [17].基于深度神经网络的药物蛋白虚拟筛选[J]. 软件工程 2020(05)
- [18].基于轻量级神经网络的人群计数模型设计[J]. 无线电工程 2020(06)
- [19].高效深度神经网络综述[J]. 电信科学 2020(04)
- [20].含磁场耦合忆阻神经网络放电行为研究[J]. 广西师范大学学报(自然科学版) 2020(03)
- [21].基于神经网络及特征运算的老年人平衡能力分析[J]. 重庆工商大学学报(自然科学版) 2020(04)
- [22].神经网络技术在机械工程中的应用及发展探析[J]. 科技创新与应用 2020(18)
- [23].基于竞争神经网络的变电站巡视周期分类[J]. 科技创新与应用 2020(18)
- [24].基于双向循环神经网络的语音识别算法[J]. 电脑知识与技术 2020(10)
- [25].结合相似日与改进神经网络的短期光伏发电预测[J]. 广西电业 2020(04)
- [26].基于神经网络的流感大数据分析[J]. 中华医学图书情报杂志 2020(03)
- [27].长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报 2020(08)
- [28].基于门控循环单元神经网络的公交到站时间预测[J]. 南通大学学报(自然科学版) 2020(02)
- [29].鼠脑神经网络的同步辐射3D成像研究[J]. 核技术 2020(07)
- [30].基于长短记忆神经网络的短期光伏发电预测技术研究[J]. 华北电力大学学报(自然科学版) 2020(04)