关键词:电力系统自动化;智能技术;应用
引言
在如今信息发达的时代,人们的生活已经离不开电力支持,我国的电力技术也突飞猛进。同样这也对目前现有电力系统自动化中的智能技术的安全性能、可靠性能提出了更高的要求。众所周知,电力系统智能技术应用广泛,对其研究也十分必要。因此,加大对电力系统自动化智能技术应用的研究很有意义,这可以继续推动电力系统的长足发展。
1智能技术的理解与应用
智能技术在一定程度上产生了技术发展,与信息技术和计算机技术密切相关。智能技术的发展不仅依赖于信息技术和计算机,还依赖于信息技术和计算机技术。智能技术依赖于计算设备,软件和其他工具来利用分析,过程控制和管理功能。此外,在中国电网建设的发展中,智能技术包括传输功能,接收功能和连接功能是可路由智能变电站继电保护系统的重要功能。内部规则智能技术开发还提供电气系统的实时控制,加强对电气系统的控制,减少风险的数量,并确保电力系统即使出现问题也能运行。最佳控制激励是调整最佳控制电压,改变相电压的传输角度,确保控制电压可以转换为输出电压,并解决各种控制操作。最佳线性优化原理,最佳光学集成可以理解控制器控制和电压控制生成,优化了局部线性化模型的控制内容,但最优线性控制仅用于局部线性模型,其他模型系统无法实现控制效果。在智能技术下,电力系统可以在技术层面集成智能控制,并结合线性最优控制和模糊控制技术,实现电力系统资源的合理分配。专家系统的控制主要基于专业的智能计算机程序系统,结合系统专家的专业经验和知识,解决了应急问题管理系统。在能源系统自动化中,专业的系统控制得到了充分的应用。系统的各个方面,包括错误处理和设备管理的特殊应用。专业的系统控制可以基于故障报警条件或电流控制中的故障紧急情况,静态和动态安全分析控制,隔离操作和故障点,准确的确定和可以随时恢复故障条件的处理和故障定位分析系统。
2智能技术在电力系统自动化中的应用
2.1神经网络控制
神经网络自一九四三年被第一次提出概念后,直到上世纪八十年代末、九十年代初才开始崭露头角,被人们确立为高新技术之一。从来源上来看,神经网络是智能控制的一个分支,其目的是为了能够解决复杂的非线性、不确定、不确知的系统控制问题。通俗的来讲,所谓神经网络就是使用许多且单一的电子神经元实行数列组合,然后组合成一个整体。而神经网络控制对于目前我国的电力系统来说主要是运用其短期负荷预报和网损计算功能,这两种功能可以的大大提高我国电力系统的工作效率,大大地减轻工作人员的负担,为整个电力系统节省了许多的人力成本。
2.2模糊控制
一般来说,模糊控制是一种比较简单易掌握的技术,特别是在一些日常家用电器中,其优越性非常明显。大家都知道在当下的智能技术里面,更先进的方法已经建立了模型,尤其是常规会议的数学模型,但是这样的方法在某些时候是十分麻烦的,而模糊控制的方式在建立的时候却会很容易。因此,目前对于如何将模糊控制的有效性提高,已经成为了一项较为重要的研究了。当然,在目前的情况下模糊控制技术是经常被电力系统的工作人员所使用的,这对促进自动化的发展具有一定的作用,它可以有效地模拟某些项目员工的模糊推理和决策。并且,模糊控制技术可以有效,科学地指导现有的一些数据,或相关控制系统的模糊输入量。反过来,模糊控制实现了有效输出的目的。其中,该技术形式所形成的、输出的固有成分主要包括模糊控制,模糊分析和模糊决策。
2.3线性最优控制
在目前这个时代里,在中国的电力系统里面,其线性最优控制方法已经长期以来被广泛使用了,并且伴随着时间的流逝和时代的发展,线性的最优控制还会继续有着愈来愈重要的作用。然而,在最开始的线性最优控制的设计中,原始的设计是基于局部线性化模型的。因此,电力系统的工作人员应该要考虑到当电力系统处于非线性下的控制时,它的控制效果极有可能会非常不理想。
在当前许多控制理论里面,线性最优控制是一个相对重要的控制理论,也是理论应用于现实的体现。在实际的环境中是有许多的、其他的控制理论的,而线性最优控制理论则是最广泛使用的理论,所以在才会在电力系统中进行使用。在实际中,电力人员会经常将理论与其电力系统的现实结合起来,进行相互补充。有专家指出,当传输线距离较远的时候,或传输容量达不到标准的时候,可采用最优励磁控制方法来解决和改进。这可以直接解决传输容量弱的问题。目前,它既是应用最广泛,也是最佳的励磁控制方法。另一方面,在水轮发电机中,当其电阻的时间被最佳地控制时,通过使用最优控制理论将获得很好的结果。
3电力系统自动化智能技术发展
3.1智能化实时控制
电力系统的运行往往会伴随大量数据产生,这些数据恰恰能够反映出电力系统运行的状态,反映出运行是否正常,是否存在安全隐患等问题,在整体运转过程中会对产生的数据进行监测和分析处理,都能够通过智能化的实时控制调整整个电力系统,目前的发展,电力系统与民生息息相关,当然在整体运行中也存在极大的风险性,只有不断改进电力系统中的智能技术,才可以保证电力系统的运行速度和供电能力满足需要。同时也会减少电力系统的故障和不必要的电力损耗,智能化实时控制技术发展为当前电力系统的方向。
3.2人工智能故障诊断
作为一个庞大繁琐的系统,传统电力系统的故障诊断为单向,并不能很好的和电力系统运行相匹配,其中会有很多复杂问题出现,也会导致电力系统不会稳定运行,当利用人工智能进行诊断,便可以快速有效的多层次监测,目前大型电力系统诊断工作都可以通过人工智能进行监测。这也从基础解决了电力系统自动化中可能出现的各种问题,及时发现问题解决问题,同时,人工智能的诊断技术不仅能够在电力系统静态中高效运行,还能够在动态中高效运行。
3.3综合智能控制
综合智能控制顾名思义,这是将现代智能技术有机结合在一起形成综合智能控制。通过严格控制智能技术,各种技术结合,优化了电力系统的资源配置,提高效率减少损耗,是目前电力系统自动化智能技术的发展方向。
结束语
电力系统在人们日常生活中占有极其重要的地位。在运营的过程中,系统容易出现问题,为了达到人们对电量的要求,更好地为人民服务,电力系统引入自动化智能技术。自动化智能技术可以及时修复电力系统中出现的问题,不影响人们对于电的需求。智能技术的不断发展进步,从而保障电力系统正常有效地运行。
参考文献
[1]陈军,郭锐.智能技术在电力系统自动化中的应用探索[J].中小企业管理与科技(中旬刊),2018(10):153-154.
[2]徐玉超.关于电力系统自动化中智能技术的应用研究[J].通讯世界,2018(09):148-149.
[3]马明.智能技术在电力系统自动化中的应用分析[J].自动化应用,2018(09):114-115.
[4]李峰.智能技术在电力系统自动化中的应用浅析[J].科技风,2018(27):200.
[5]尤丹丹,杨天平.智能技术在电力系统自动化中的应用[J].设备管理与维修,2018(16):170-172.