导读:本文包含了坏数据处理论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:数据处理,算法,负荷,特性,母线,矩阵,均值。
坏数据处理论文文献综述
孙谦,姚建刚,金敏,杨胜杰,匡少林[1](2013)在《基于特性矩阵分层分析的短期母线负荷预测坏数据处理策略》一文中研究指出原始数据分析是提高短期母线负荷预测精度的重要环节,提出一种基于特性矩阵分层分析的坏数据处理策略。首先研究划分样本集最优簇结构的聚类算法。利用AP聚类计算标幺曲线样本集的聚类数搜索区间;从大到小排列各样本点的密度指标,得到初始化矩阵;通过Silhouette指标进行有效性检验,最终得到最优聚类结果。参照特征曲线,计算反映负荷点性质的横向及纵向特征向量,进而形成特性矩阵。运用判别准则对日负荷曲线的特性矩阵进行分层分析,并针对不同变化特性的母线负荷制定相应的坏数据处理策略。实例分析表明,本文提出的方法可有效改善原始数据的质量,提高母线负荷预测精度。(本文来源于《电工技术学报》期刊2013年07期)
蒋雯倩,李欣然,钱军[2](2011)在《改进FCM算法及其在电力负荷坏数据处理的应用》一文中研究指出变电站日负荷曲线含有丰富的综合负荷构成特性信息,可以用于负荷特性的分类与综合,但必须对原始生数据进行坏数据的辨识与调整。在深入分析已有方法以及负荷建模对日负荷曲线分类与综合要求的基础上,提出一种基于拉格朗日(Lagrange)插值方法和模糊聚类原理的改进的模糊C均值聚类FCM(fuzzy C-means)算法应用于变电站日负荷曲线的坏数据辨识与调整。首先运用内维尔(Neville)算法对缺失数据补全;然后采用改进FCM算法对日负荷曲线进行聚类,产生各类的特征曲线,利用负荷曲线的横向相似性辨识负荷坏数据;最后利用特征曲线进行坏数据调整。实例分析取得了良好效果。(本文来源于《电力系统及其自动化学报》期刊2011年05期)
坏数据处理论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
变电站日负荷曲线含有丰富的综合负荷构成特性信息,可以用于负荷特性的分类与综合,但必须对原始生数据进行坏数据的辨识与调整。在深入分析已有方法以及负荷建模对日负荷曲线分类与综合要求的基础上,提出一种基于拉格朗日(Lagrange)插值方法和模糊聚类原理的改进的模糊C均值聚类FCM(fuzzy C-means)算法应用于变电站日负荷曲线的坏数据辨识与调整。首先运用内维尔(Neville)算法对缺失数据补全;然后采用改进FCM算法对日负荷曲线进行聚类,产生各类的特征曲线,利用负荷曲线的横向相似性辨识负荷坏数据;最后利用特征曲线进行坏数据调整。实例分析取得了良好效果。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
坏数据处理论文参考文献
[1].孙谦,姚建刚,金敏,杨胜杰,匡少林.基于特性矩阵分层分析的短期母线负荷预测坏数据处理策略[J].电工技术学报.2013
[2].蒋雯倩,李欣然,钱军.改进FCM算法及其在电力负荷坏数据处理的应用[J].电力系统及其自动化学报.2011