山东莱钢永锋钢铁有限公司山东德州251100
摘要:当前社会经济的发展和城市基础建设项目的推进加快了建筑市场和企业的发展,在当前的市场竞争环境中,施工企业要想提升施工质量和竞争例,就要在施工中推进新兴施工技术的使用,提高施工质量。深基坑支护技术在地下设施建设施工中使用较多,针对其应用过程进行研究对建筑行业发展有一定的价值。文章对深基坑支护施工技术在建筑工程当中的应用进行相关分析,并提出几点有建设性的意见和建议,希望能够在建筑工程应用过程当中起到参考作用。
关键词:深基坑支护;建筑工程;应用
引言
在新时代到来的背景下,城市人口总数量得到了极大增加,建筑工程项目数量及规模也正在不断提升,随之而来建筑工程地下空间开发也被正式提上日程,在此种情况下,深基坑支护施工技术应用频率也持续上升,在建筑工程施工中发挥着重要作用,不但能切实保证建筑施工各项环节顺利落实,大大缩短施工进度,还能最大限度提高深基坑支护施工质量水平,促使建筑工程事业朝向可持续方向健康发展。
1深基坑支护技术
深基坑支护是指在施工中对深基坑的侧壁和环境进行一定的保护和加固处理,避免施工过程影响周边环境和建筑,并提升地下工程施工的安全性。随着当前城市地下工程如地铁和排水系统建设工程的不断增加,深基坑支护技术也得到了较大的发展。深基坑支护技术的施工过程复杂,容易受到施工环境中的多种因素的影响,因此,在实际施工之前,施工人员要对周边环境进行勘测,对施工环境的土质进行测量,避免土质松软或是沉降性较强带来的施工安全问题。尽管深基坑支护技术得到了较大的发展,但是在实际施工中仍然会出现基坑的失稳问题,造成这种现象的原因多样,包括设计人员在支护设计中的错误、支护施工质量较低以及勘测数据不准确等问题。在深基坑支护技术的应用过程中,针对施工过程进行优化,确保施工质量是保证技术发挥其应有作用的有效手段。
2建筑工程深基坑支护施工技术的特点
2.1容易发生安全事故
在对深基坑施工的过程当中,会对施工地区以及周围的地质环境造成一定程度的破坏,对附近建筑物的安全与稳定性造成影响,造成一定的安全隐患,会容易发生安全事故。特别是在施工的过程当中,因为支护工作做得不够,或者是受到外界因素的影响,支护工作并没有起到作用,对建筑物结构的稳定性造成影响,造成安全事故的发生。由于支护工程而发生的安全事故还会起到很多的负面的作用,第一就是使工程的工期更长、工作人员的身心健康造成损害、事故成本更高,引发工程纠纷的发生,对社会造成很多的负能量,使建筑施工企业面临更大的社会压力以及资金压力。
2.2区域性
对于深基坑支护施工来说,其还具有局域性的特征。这里所说的局域性指的是在深基坑支护施工中极易受周围环境等外界因素的影响,这些因素中的一部分可能会给施工的正常进行带来一定的影响。所以,在深基坑支护施工中常常会由于一些不起眼的变化而影响整个工程项目的正常实施,甚至还会带来一定的危害。这些外部因素主要包含如下几种:天气变化、温差变化、施工区域内的土质条件因素、建筑物与人口密度等。由此可以看出,深基坑支护施工所涉及的因素较为复杂,这就需要相关人员在施工中对此加以特别的注意。
2.3基坑深度加大
深基坑在实际的施工过程中存在着几个特点,正是这些特点导致了当前的深基坑支护施工难度大,首先,深基坑支护施工最大的一个特点则是基坑的深度越来越大,随着我国建筑行业的发展,城市空间的缩小,当前许多建筑工程的基坑深度都不断地加大,导致深基坑支护施工的难度越来越大。
3建筑工程中深基坑支护的应用
3.1地下连续桩支护
地下连续桩施工技术在当前的工程建设中应用较少,造成这一问题的主要原因是相较于其他施工手段,地下连续桩支护的施工成本较高,不适合在中小工程中进行使用。除了施工成本问题之外,在工程前期还要使用大量人力对施工区域的环境进行勘测和处理,并保证施工区域的安全等级、施工设备以及地下水不会影响连续桩施工的作用。这一施工技术在深基坑支护中的实用性较高,可以避免地下水对施工过程造成影响,但是施工成本问题限制了其在建筑工程中的应用频率。在满足施工要求的工程中,将地下连续桩支护进行使用可以提升支护主体的刚度,进而保证工程的承载力和稳定性,在未来的发展中,技术人员应当降低地下连续桩支护的成本,扩宽应用范围,使其可以在更多的工程中进行使用。
3.2土层锚杆施工
通常在基坑围护灌注桩、钢筋混凝土桩及地下连续墙施工顺利完成后,施工人员应充分参考深基坑支护施工实际进度因素,在土层开挖至锚杆标准深度后实行土层锚杆施工。具体包括以下步骤:①使用循环式钻机、螺旋式钻机及冲击式钻机等大型设备开展成孔施工,其中应用频率最高便是压水钻进法,在具体使用期间可快速完成清孔、出渣、钻进等一系列工序,但如果施工现场水文地质条件允许也可采用螺旋钻杆方法。②放置拉杆。一般在使用拉杆前需施工人员能够做好除锈工作,彻底去除钢绞线上油脂,将土层锚杆合理控制在28m左右,最后再使用普通类型硅酸盐水泥,因建筑工程地下水呈现弱酸性,因而需尽可能使用纯水灰比或防酸水泥材料,确保水泥浆流动幅度充分满足泵送需求,并且为防止水泥浆出现干缩和泌水现象可在水泥中加入适当磺酸钙。在此期间还需注意一点就是,在具体开展灌浆施工工作时,施工人员应将压浆泵放入到拉杆中,最后再从拉杆土层锚孔处注入,可有效提升建筑工程施工质量。
3.3土钉支护施工
在深基坑支护施工中,土钉支护是一种较为稳定的施工方式,其操作非常简单。土钉支护的原理就是通过对土钉与土体间的相互作用力,来使深基坑的支护得以固定。但是,在实际的施工过程中常常会在土钉周围发生土体变形的情况,这就需要对此加以特别的注意。在施工的过程中,如果发生上述情况,就要让工程暂时停止,待土钉重新固定后方可继续进行施工。如果不及时采取有效的措施,就可能会引发安全问题。另外,在将土钉稳固之前,需要进行有关的测量,并要对土钉的拉力进行检测,以保证整个建筑工程的施工质量。在建立土钉墙支护系统的过程中,还要通过对不同方式的利用,使土钉墙支护系统构造得到进一步的优化,进而实现深基坑支护施工效率的有效提升。
3.4钢板桩支护结构
钢板桩支护结构对于基坑的深度要求以及变形要求都不高,一般情况下,钢板桩支护结构的基坑深度不超过8米,是目前深基坑支护结构最基本的结构。在应用钢板桩支护结构时,施工人员需要将钢板桩的横截面截成U形、Z形或者是直腹板行,一般情况下,钢板桩可以进行多次反复使用,但是在使用过程中,由于钢板桩支护的柔性比较,所以在应用的过程中需要使用较多的支撑或者锚拉杆进行支撑。而且钢板桩支护结构在施工的过程中,所造成的噪音比较大,因此不适用于人群密集的地区,比较适用于偏僻、人少的地区。
结语
综上所述,将深基坑支护施工技术合理应用到建筑工程中,不但能充分保证建筑工程安全稳定性能,还能有效提升建筑工程施工效率和质量,大大延长工程整体使用寿命。然而在此期间仍存在着一定问题,需要施工单位引起高度重视,结合施工现场实际情况提出可行性应对措施,加大管理控制力度,促使深基坑支护施工能够发挥出自身存在真正价值。
参考文献:
[1]刘刚.建筑工程中的深基坑支护施工技术[J].工程建设与设计,2017(07):162~163+166.
[2]王铎.深基坑支护施工技术在建筑工程中的应用分析[J].科技风,2016(20):169.