网络推断在生物网络中的应用研究

网络推断在生物网络中的应用研究

论文摘要

高通量技术的快速发展为基因组范围内的基因表达和蛋白质活性提供了大量信息。生物数据出现了前所未有的增长,有效的利用这些数据,由这些数据挖掘出其背后的生物网络是系统生物学的研究热点之一。复杂网络理论为我们探索各种复杂系统提供了一个新的视角,人们逐渐认识到研究过程中不能仅局限于单个基因,而是应该全面地从系统的角度去探寻生物分子间的相互作用关系,从而研究整个生物系统的运行机制。生物网络推断的目的正是从生物数据中构建生物分子间相互作用关系所构成的网络结构。因此,生物网络推断的研究具有重要的意义。蛋白质参与和控制了生物内大部分生命活动。蛋白质间相互作用网络(PPI)的分析方法成为蛋白质功能特性研究的重要途径,对蛋白质间相互作用网络的分析不仅为系统认识细胞内生命活动的作用机制提供有效方法,同时也在疾病诊断治疗和药物开发等方面的广泛应用发挥了重要的作用。三阴性乳腺癌(TNBC)是指癌组织免疫组织化学结果为雌激素受体(ER)、孕激素受体(PR)和原癌基因(Her-2)均为阴性的乳腺癌。TNBC往往更具侵略性,与受体阳性亚型的预后相关,在青年和非洲裔美国妇女中更常见。乳腺癌是全世界女性中最常见的生命危害疾病之一,乳腺癌的各种遗传指标已经过详尽的研究。据统计,三分之一的乳腺癌患者后来复发或转移。尽管检测和新兴治疗已取得很大进展,但必须进一步改进早期诊断以减少转移的机会。为了更好的预测疾病,监测和早期诊断非常重要,了解身体的蛋白质水平可能会导致产生癌症如何发挥作用的新预测模型。由于细胞的实际功能特性是通过蛋白质传播的,一些癌症研究人员使用细胞系或由于技术挑战而分析深度较低,已经对蛋白质组学进行了广泛的研究。超过80%的乳腺癌可通过靶向治疗进行治疗,但三阴性乳腺癌是一个重要的未得到解决的临床问题。本文以三阴性乳腺癌的蛋白质组学数据为研究对象,通过研究MAPK信号传导通道中与细胞增殖有关的特定途径的蛋白质,这些特定的途径包括MAP激酶、JNK激酶和P38激酶路径通道。通过对特定途径蛋白质相互作用网络进行构建,挖掘蛋白质间相互作用关系,检测出对于动态过程的关键蛋白质,这些关键蛋白质的发现能够为医疗诊断及诊断效果的监控等许多生物及医学难题提供参考依据。近些年来,基于信息论的相关性度量方法被广泛应用以构建生物网络。有学者提出了以条件互信息(CMI)为网络节点间相关性的度量指标,并基于路径相容算法(PCA)进行网络边的删除的方法构建网络。该算法具有非线性独立性的检测性能,且具有计算简便、运行速度快的特点,比较适合用来构建复杂的生物网络。因此,我们选用Yair Pozniak等(2016)文献中收集的乳腺癌不同阶段的88个样本,通过Go-enrichment对基因集进行功能分析,选出Ras-Protein和Response to cytokine功能的90个蛋白质进行研究。运用PCA-CMI算法,我们对所选出的90个蛋白质在不同状态下构建了四个不同的网络,并对所构建的网络的拓扑结构和特性进行了对比。在对MAPK信号传导的特定蛋白质进行蛋白质间相互作用网络构建时,我们首先对MAPK通道的特定蛋白质数据进行处理,基于生物学背景挑选出经典传导路径的60个蛋白质进行研究,然而由于数据缺失比例较大,移除缺失率高达50%的蛋白质,对剩下的27个蛋白质数据进行补全。然后通过扩散图和Wanderlust算法对44个非时间序列的27个蛋白质进行伪时间排序,然后通过高斯过程回归对这27个数据进行平滑处理。我们发现有部分经过平滑后的蛋白质数据和原始数据相比存在很大的“噪音”,因而将这些蛋白质移除。最后对剩下的16个蛋白质数据进行蛋白质间相互作用动态网络的构建。其次我们针对经过选择及数据处理后的16个蛋白质进行蛋白质间相互作用网络的推断。其推断过程主要分为两部分:首先通过自上而下的方法(高斯图模型)对16个蛋白质构建静态网络;然后基于此静态网络的拓扑结构,我们通过自下而上的方法(即微分方程建模)对所推断的静态网络进行动态网络的构建。我们将原始数据运用在高斯图模型上进行静态网络的构建,在进行微分方程建模时我们采用的是经过伪时序平滑处理后的蛋白质数据。通过近似贝叶斯计算的拒绝算法对微分方程的参数进行估计。在构建微分方程数学模型时我们假定所推断的网络拓扑结构中节点间的边具有双向性(即同时具有正向调控作用和负向调控作用)。利用Kitano教授提出的稳定性理论对微分方程的稳定性进行检验,我们逐步小心的依次删除具有方向的边。最后推断出12个蛋白质间相互作用的动态网络。最后,本文通过对条件互信息(CMI)和路径相容算法(PCA)相结合的网络推断算法进行研究(即PCA-CMI算法和与此相类似的PCA-PMI算法)。我们发现路径相容算法(PCA)会因输入变量顺序的不同而产生不同的结果。在处理高维数据时,这种情况尤其突出。为解决这一问题,我们结合统计方法,以PCA-CMI算法为基础,通过多次随机实验模拟得到网络边的频率矩阵从而构建网络。实验表明,依据边的频率矩阵的方法构建的网络并不理想。然后,我们又对PCA-CMI算法的0阶、1阶及2阶的条件互信息矩阵(边的权重矩阵)进行实验模拟。在Matlab上对算法进行计算分析,我们发现依据边权重矩阵(即2阶条件互信息矩阵)的均值矩阵构建网络的方法具有较高的精度。因而,我们提出依据边权重(2阶CMI矩阵)的均值矩阵构建网络的新方法(简称为EWMM)。通过ROC曲线对比表明,我们所提出的EWMM算法比PCA-CMI算法具有更好的性能。本文的主要创新之处有以下四点:第一,我们基于非时间序列的三阴性乳腺癌数据进行动态网络的构建,这是目前为止第一个对于非时间序列数据的动态网络研究。第二,在构建动态网络时,我们提出了一个新的数学模型。利用该数学模型,我们可以探讨蛋白质间相互作用关系。同时该数学模型在判定蛋白质相互作用关系时具有较高的灵活性。第三,基于三阴性乳腺癌病人的蛋白质数据,我们对特定途径的蛋白质进行了静态网络和动态网络的构建。因此所构建的动态网络同基于正常细胞所推断的网络模型相比具有一些相同和不同之处。因此,我们所构建的三阴性乳腺癌病人蛋白质相互作用网络,对以后的实验研究具有一定的预测意义。第四,基于相关性对静态网络的推断,我们提出了一个新的算法。该算法建立在PCA-CMI算法基础之上,我们解决了PC(Path consistency)算法因输入变量顺序不同而得到不同结果的问题。即提出了一个统计的方法,通过多次试验模拟得到边权重均值矩阵,依据所得到的边权重均值矩阵对网络进行推断。我们所提出的新算法与现有算法相比具有一定的优势。

论文目录

  • 摘要
  • abstract
  • 导论
  •   一、研究背景及研究意义
  •   二、国内外研究综述
  •   三、研究内容及逻辑结构
  •   四、研究方法
  •   五、创新之处
  • 第一章 蛋白质间相互作用网络研究基础
  •   第一节 生物学中的网络基本概念
  •     一、系统生物网络相关介绍
  •     二、网络的相关概念
  •     三、生物网络的统计特征
  •   第二节 基因(蛋白质)间相关性度量
  •     一、基于线性关系相关性的度量
  •     二、基于非线性关系的相关性度量
  •     三、不同相关性度量方法的比较
  •   第三节 蛋白质间相互作用网络相关介绍
  •     一、蛋白质间相互作用网络(PPI)
  •     二、蛋白质间相互作用网络(PPI)的基本特性
  •   本章小结
  • 第二章 蛋白质间相互作用网络推断及相关算法
  •   第一节 网络推断的理论基础
  •     一、生物网络推断的介绍
  •     二、基于模型的网络推断方法
  •     三、基于相关性的网络推断方法
  •   第二节 高斯图模型理论及相关研究
  •     一、概率图模型的介绍
  •     二、邻接矩阵
  •     三、高斯图模型理论
  •   第三节 基于信息论的网络推断
  •     一、路径相容算法(PC算法)
  •     二、基于信息论相关算法
  •     三、基于全样本蛋白质数据网络的构建
  •     四、不同状态下网络结构对比
  •   第四节 动态网络相关理论介绍
  •     一、基于微分方程的动态网络模型构建
  •     二、基于因果推断的动态网络模型
  •   本章小结
  • 第三章 蛋白质数据的分析与处理
  •   第一节 基于病人蛋白数据的筛选
  •     一、蛋白质组学数据的选择
  •   第二节 缺失数据的补全方法
  •     一、处理缺失数据的方法
  •     二、基于病人蛋白数据的补全方法
  •   第三节 基于单个病人蛋白数据的伪时间排序
  •     一、伪时间排序
  •     二、数据平滑
  •     三、基于单个病人蛋白数据伪时间排序模拟
  •   本章小结
  • 第四章 基于单个病人蛋白质数据的调控网络推断
  •   第一节 基于高斯图模型构建的网络
  •     一、MAPK通路
  •     二、16个基因构成的网络
  •     三、12个蛋白质构成的网络
  •   第二节 数学模型的建立
  •     一、基于贝叶斯推断的参数估计
  •     二、近似贝叶斯计算相关介绍
  •     三、动态网络的构建
  •   第三节 模型的稳定性分析及网络优化
  •     一、参数估计的选择标准
  •     二、稳定性检验
  •     三、网络的优化
  •   本章小结
  • 第五章 基于输入变量顺序独立的网络的构建
  •   第一节 PC算法的变量顺序依赖性相关论述
  •     一、PC算法输入变量顺序对输出图骨架的影响
  •   第二节 基于边出现频率的网络推断
  •     一、基于边出现频率构建网络的思想
  •     二、算法的结果分析
  •   第三节 基于边权重均值矩阵的网络推断
  •     一、基于边的权重构建网络的思想
  •     二、基于边权重的均值矩阵算法
  •     三、对边权重均值矩阵的算法(EWMM法)构建网络的评估
  •   第四节 MAPK信号通路网络的构建
  •     一、57个蛋白质构建的网络
  •     二、基于最小生成树的最小连通图
  •     三、边权重的均值法(EWMM)构建的网络
  •     四、三个网络同KEGG通路的比较
  •   本章小结
  •   总结与展望
  •     一、研究内容总结
  •     二、研究中的局限与展望
  • 参考文献
  • 在读期间科研成果
  •   一、已完成的科研论文
  •   二、参加的学术交流
  • 附录
  •   附录 A
  •   附录 B
  • 致谢
  • 文章来源

    类型: 博士论文

    作者: 闫艳

    导师: 田天海

    关键词: 网络推断,蛋白质间相互作用网络,贝叶斯推断,路径相容算法,条件互信息

    来源: 中南财经政法大学

    年度: 2019

    分类: 基础科学

    专业: 生物学

    单位: 中南财经政法大学

    分类号: Q811.4

    总页数: 141

    文件大小: 7495K

    下载量: 14

    相关论文文献

    • [1].生物网络在生物功能分析中的应用[J]. 高师理科学刊 2018(03)
    • [2].疫情期间初三生物网络教学实效性的实践研究[J]. 基础教育论坛 2020(26)
    • [3].复杂生物网络分析的图聚类方法研究进展[J]. 食品与生物技术学报 2008(05)
    • [4].一款轻量级的复杂生物网络图形化分析软件的设计与实现[J]. 智能计算机与应用 2018(02)
    • [5].设计合理高效的生物网络课[J]. 中国信息技术教育 2011(18)
    • [6].生物网络型社会组织[J]. 办公自动化 2015(11)
    • [7].生物网络模体识别算法概述[J]. 科协论坛(下半月) 2010(02)
    • [8].复杂生物网络自动画图算法分析[J]. 计算机工程 2010(08)
    • [9].大规模生物网络马尔可夫聚类的并行化算法[J]. 计算机应用 2019(01)
    • [10].一种带权值图匹配算法的研究[J]. 福建电脑 2016(04)
    • [11].microRNA调控的生物网络[J]. 生命科学 2008(04)
    • [12].药物开发的未来——新疗法发展[J]. 西部皮革 2019(10)
    • [13].基于网络拓扑的生物网络关键节点识别研究进展[J]. 数学的实践与认识 2011(07)
    • [14].基于消息传递接口的大规模生物网络比对并行化算法[J]. 计算机应用 2014(11)
    • [15].使用Cytoscape对生物网络数据的建模和分析[J]. 农业网络信息 2017(06)
    • [16].几种人类生物网络的自相似性实证研究[J]. 计算机工程与应用 2011(16)
    • [17].矢量格兰杰因果关系及其在复杂网络中的应用[J]. 计算机工程与应用 2008(29)
    • [18].4G生活猜想[J]. 中国经济周刊 2013(40)
    • [19].书讯[J]. 军事运筹与系统工程 2010(04)
    • [20].网络药理学研究相关技术与应用[J]. 天津中医药大学学报 2015(02)
    • [21].生物网络研究进展述评(英文)[J]. 生物信息学 2011(02)
    • [22].基于生物网络的当归芍药散、桂枝茯苓丸治疗原发性痛经作用机制研究[J]. 中药材 2015(11)
    • [23].复杂网络理论在基因调控网络中的应用[J]. 重庆科技学院学报(自然科学版) 2009(05)
    • [24].基于生物网络与表达谱信息的基因功能预测与分析综述[J]. 计算机与应用化学 2017(02)
    • [25].第64届美国运动医学会年会关于“运动益处的生物网络”研究热点与趋势[J]. 北京体育大学学报 2017(08)
    • [26].网络药理学的研究方法与应用进展[J]. 药学实践杂志 2015(05)
    • [27].本期“复杂性科学”专栏评述[J]. 电子科技大学学报 2013(03)
    • [28].基因组水平上重构代谢网络的研究进展[J]. 药物生物技术 2012(02)
    • [29].异质生物网络的同步节律的实验研究[J]. 物理学报 2012(24)
    • [30].基于动态优化算法的复杂生物网络的状态调控[J]. 生物医学工程学杂志 2020(01)

    标签:;  ;  ;  ;  ;  

    网络推断在生物网络中的应用研究
    下载Doc文档

    猜你喜欢