基于深度卷积神经网络的铁路接触网鸟窝检测方法研究

基于深度卷积神经网络的铁路接触网鸟窝检测方法研究

论文摘要

鸟类在铁路接触网筑巢一直是造成接触网故障的一个重要原因,目前主要依靠人工巡检的方式确定是否存在鸟窝,不仅工作量大、漏检率高,而且效率低。因此提升接触网鸟窝的检测效率,及时排除隐患,对保障铁路安全运营具有重要的意义。针对此问题,提出了一种基于深度卷积神经网络的Faster R-CNN模型用于接触网鸟窝的自动识别。通过自定义合适的网络结构和参数,经过预训练、 RPN网络训练、Fast R-CNN网络训练以及对RPN和Fast R-CNN的联合训练,建立了适合鸟窝检测的Faster R-CNN模型,实现对鸟窝的检测。经试验,Faster R-CNN的准确率为88.5%,每张图片的识别速度为79 ms,通过与传统的HOG方法、DPM方法和卷积神经网络方法进行比较,验证了深度卷积神经网络对铁路接触网鸟窝检测高效性。

论文目录

  • 0 引言
  • 1 Faster R-CNN检测模型
  • 2 基于Faster R-CNN模型的鸟窝识别检测
  •   2.1 预训练
  •   2.2 RPN训练
  •   2.3 Fast R-CNN网络训练
  •   2.4 Fast R-CNN与RPN联合调优训练
  • 3 试验及结果分析
  •   3.1 样本来源与数据处理
  •   3.2 试验结果分析
  •     3.2.1 Anchor参数选择
  •     3.2.2 全卷积网络模型比较
  •     3.2.3 与其他方法比较
  • 4 结语
  • 文章来源

    类型: 期刊论文

    作者: 贺德强,江洲,陈基永,杨严杰,姚晓阳

    关键词: 深度学习,接触网,鸟窝检测,卷积神经网络

    来源: 机车电传动 2019年04期

    年度: 2019

    分类: 工程科技Ⅱ辑,信息科技

    专业: 铁路运输,自动化技术

    单位: 广西大学机械工程学院,中车株洲电力机车研究所有限公司

    基金: 国家自然科学基金项目(51765006),广西科技攻关项目(桂科攻1598009-6),广西自然科学基金重点项目(2017GXNSFDA198012)

    分类号: U225;TP183

    DOI: 10.13890/j.issn.1000-128x.2019.04.027

    页码: 126-130

    总页数: 5

    文件大小: 1431K

    下载量: 178

    相关论文文献

    • [1].基于优化神经网络的地质灾害监测预警仿真[J]. 计算机仿真 2019(11)
    • [2].基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J]. 轻工机械 2019(06)
    • [3].时频联合长时循环神经网络[J]. 计算机研究与发展 2019(12)
    • [4].几种典型卷积神经网络的权重分析与研究[J]. 青岛大学学报(自然科学版) 2019(04)
    • [5].基于GA-BP神经网络异纤分拣机检测参数优化[J]. 棉纺织技术 2020(01)
    • [6].基于集成神经网络的织物主观风格预测研究[J]. 纺织科技进展 2020(01)
    • [7].试析神经网络技术在机械工程中的应用及发展[J]. 网络安全技术与应用 2020(02)
    • [8].一种深度小波过程神经网络及在时变信号分类中的应用[J]. 软件 2020(02)
    • [9].不同结构深度神经网络的时间域航空电磁数据成像性能分析[J]. 世界地质 2020(01)
    • [10].基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报 2020(04)
    • [11].基于生成对抗网络和深度神经网络的武器系统效能评估[J]. 计算机应用与软件 2020(02)
    • [12].基于循环神经网络的双轴打捆机智能换挡策略研究[J]. 安徽工程大学学报 2020(01)
    • [13].基于图神经网络的实体对齐研究综述[J]. 现代计算机 2020(09)
    • [14].基于改进的循环神经网络深度学习跌倒检测算法[J]. 电脑编程技巧与维护 2020(03)
    • [15].神经网络探索物理问题[J]. 物理 2020(03)
    • [16].基于GA-BP神经网络的城市用水量预测[J]. 现代电子技术 2020(08)
    • [17].基于深度神经网络的药物蛋白虚拟筛选[J]. 软件工程 2020(05)
    • [18].基于轻量级神经网络的人群计数模型设计[J]. 无线电工程 2020(06)
    • [19].高效深度神经网络综述[J]. 电信科学 2020(04)
    • [20].含磁场耦合忆阻神经网络放电行为研究[J]. 广西师范大学学报(自然科学版) 2020(03)
    • [21].基于神经网络及特征运算的老年人平衡能力分析[J]. 重庆工商大学学报(自然科学版) 2020(04)
    • [22].神经网络技术在机械工程中的应用及发展探析[J]. 科技创新与应用 2020(18)
    • [23].基于竞争神经网络的变电站巡视周期分类[J]. 科技创新与应用 2020(18)
    • [24].基于双向循环神经网络的语音识别算法[J]. 电脑知识与技术 2020(10)
    • [25].结合相似日与改进神经网络的短期光伏发电预测[J]. 广西电业 2020(04)
    • [26].基于神经网络的流感大数据分析[J]. 中华医学图书情报杂志 2020(03)
    • [27].长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报 2020(08)
    • [28].基于门控循环单元神经网络的公交到站时间预测[J]. 南通大学学报(自然科学版) 2020(02)
    • [29].鼠脑神经网络的同步辐射3D成像研究[J]. 核技术 2020(07)
    • [30].基于长短记忆神经网络的短期光伏发电预测技术研究[J]. 华北电力大学学报(自然科学版) 2020(04)

    标签:;  ;  ;  ;  

    基于深度卷积神经网络的铁路接触网鸟窝检测方法研究
    下载Doc文档

    猜你喜欢