采用CNN和Bidirectional GRU的时间序列分类研究

采用CNN和Bidirectional GRU的时间序列分类研究

论文摘要

时间序列数据具有非离散性、数据之间的时序相关性、特征空间维度大等特点,当前大多数分类方法需要经过复杂的数据处理或特征工程,未考虑到时间序列具有不同时间尺度特征以及序列数据之间的时序依赖。通过结合卷积神经网络和循环神经网络中的双向门控循环单元,提出了一个新的端对端深度学习神经网络模型BiGRU-FCN,不需要对数据进行复杂的预处理,并且通过不同的网络运算来获取多种特征信息,如卷积神经网络在时序信息上的空间特征以及双向循环神经网络在序列上的双向时序依赖特征,对单维时间序列进行分类。在大量的基准数据集上对模型进行实验与评估,实验结果表明,与现有的多种方法相比,所提出的模型具有更高的准确率,具有很好的分类效果。

论文目录

  • 1 引言
  • 2 背景及相关工作
  • 3 时间序列分类的深度学习网络结构
  •   3.1 时间序列上的卷积神经网络
  •   3.2 双向GRU的时序建模
  •     3.2.1 RNN、LSTM、GRU
  •     3.2.2 Bidirectional GRU
  •   3.3 时间序列上的卷积神经网络与循环神经网络的结合
  • 4 实验结果分析与对比
  •   4.1 实验平台
  •   4.2 实验设置
  •   4.3 实验结果
  •     4.3.1 评估指标
  •     4.3.2 实验结果
  • 5 总结和展望
  • 文章来源

    类型: 期刊论文

    作者: 张国豪,刘波

    关键词: 时间序列分类,深度学习,卷积神经网络,循环神经网络,双向门控循环单元

    来源: 计算机科学与探索 2019年06期

    年度: 2019

    分类: 信息科技,基础科学

    专业: 数学,自动化技术

    单位: 暨南大学信息科学技术学院

    基金: 国家自然科学基金No.U1431227,广州市科技计划基金No.201604010037~~

    分类号: TP183;O211.61

    页码: 916-927

    总页数: 12

    文件大小: 5103K

    下载量: 739

    相关论文文献

    • [1].基于非稳态时间序列的生理控制模型研究[J]. 系统工程理论与实践 2020(02)
    • [2].基于多样化top-k shapelets转换的时间序列分类方法[J]. 计算机应用 2017(02)
    • [3].时间序列趋势预测[J]. 现代计算机(专业版) 2017(02)
    • [4].基于分型转折点的证券时间序列分段表示法[J]. 商 2016(31)
    • [5].基于ARMA模型的股价预测及实证研究[J]. 智富时代 2017(02)
    • [6].《漫长的告别》(年度资助摄影图书)[J]. 中国摄影 2017(04)
    • [7].王嵬作品[J]. 当代油画 2017(07)
    • [8].基于模糊时间序列的计算机信息粒构建研究[J]. 粘接 2020(10)
    • [9].基于时间序列挖掘的合成旅装备维修保障能力预测[J]. 系统工程与电子技术 2020(04)
    • [10].风速时间序列混沌判定方法比较研究[J]. 热能动力工程 2018(07)
    • [11].土壤退化时间序列的构建及其在我国土壤退化研究中的意义[J]. 土壤 2015(06)
    • [12].基于信息颗粒和模糊聚类的时间序列分割[J]. 模糊系统与数学 2015(01)
    • [13].不确定时间序列的降维及相似性匹配[J]. 计算机科学与探索 2015(04)
    • [14].时间序列的异常点诊断方法[J]. 中国卫生统计 2011(04)
    • [15].基于独立成分分析的时间序列谱聚类方法[J]. 系统工程理论与实践 2011(10)
    • [16].面向不确定时间序列的分类方法[J]. 计算机研究与发展 2011(S3)
    • [17].一种基于频繁模式的时间序列分类框架[J]. 电子与信息学报 2010(02)
    • [18].超启发式组合时间序列预报模型[J]. 福建电脑 2020(08)
    • [19].基于深度学习的时间序列算法综述[J]. 信息技术与信息化 2019(01)
    • [20].基于时间序列符号化模式表征的有向加权复杂网络[J]. 物理学报 2017(21)
    • [21].基于互相关的二阶段时间序列聚类方法[J]. 计算机工程与应用 2016(19)
    • [22].基于期货市场行为的时间序列切分及表示方法研究[J]. 中国管理信息化 2015(19)
    • [23].基于形态特征的时间序列符号聚合近似方法[J]. 模式识别与人工智能 2011(05)
    • [24].基于模糊时间序列对我国对外贸易中的进口水平的预测[J]. 统计与决策 2010(23)
    • [25].模糊变量时间序列及其应用[J]. 辽宁工程技术大学学报(自然科学版) 2010(06)
    • [26].时间序列流的分层段模型[J]. 小型微型计算机系统 2009(04)
    • [27].发动机转速时间序列分形特征分析[J]. 机械科学与技术 2008(11)
    • [28].基于HDAD的异构航空数据异常检测的研究[J]. 计算机仿真 2020(03)
    • [29].重庆藕塘滑坡地下水位时间序列混沌性判别与预测[J]. 人民长江 2020(S1)
    • [30].基于能量过滤的不确定时间序列数据清洗方法[J]. 智能计算机与应用 2019(04)

    标签:;  ;  ;  ;  ;  

    采用CNN和Bidirectional GRU的时间序列分类研究
    下载Doc文档

    猜你喜欢