基于Attention深度随机森林的社区演化事件预测

基于Attention深度随机森林的社区演化事件预测

论文摘要

在网络结构不断变化的同时,社区结构也随之演化.社区结构在不同时间片的变化可定义为四种不同的演化事件:持续、分离、融合和消失.本文运用网络表示学习的方法,对网络进行图嵌入编码映射到低维向量空间中,研究动态社区演化事件的预测.特征方面,在传统的社区内部属性特征、时间片间属性特性变化和前段时间片的社区演化事件的特征维度的基础上,引入潜在结构特征表征四种演化事件,运用随机游走和Softmax思想获取潜在的结构特征;模型方面,引入深度随机森林的策略,同时采用attention机制、蒙特卡洛特征采样策略进行特征融合和特征训练,克服了已有算法仅获取局部结构特征的缺陷.实验在DBLP、FACEBOOK和Bitcoin数据集上,对比SVM、XGBOOST和RIDGE模型训练,证实了新提出的算法模型对最终预测准确率有很大的提升.

论文目录

  • 1 引言
  • 2 相关工作
  • 3 基本概念
  • 4 特征工程
  •   4.1 基本特征
  •   4.2 潜在结构特征
  •   4.3 算法收敛性
  • 5 attention深度随机森林
  •   5.1 引入attention机制
  •   5.2 时间复杂性分析
  • 6 实验
  •   6.1 数据集和对比模型
  •   6.2 实验模型参数
  •     6.2.1 编码长度
  •     6.2.2 滑动窗口大小及步长
  •   6.3 特征的重要程度分布
  •   6.4 特征预测结果
  • 7 结束语
  • 文章来源

    类型: 期刊论文

    作者: 潘剑飞,曹燕,董一鸿,陈华辉,钱江波

    关键词: 社区演化,图嵌入,网络表示学习,深度随机森林,机制

    来源: 电子学报 2019年10期

    年度: 2019

    分类: 信息科技,基础科学

    专业: 数学,自动化技术

    单位: 宁波大学信息科学与工程学院

    基金: 国家自然科学基金(No.61472194,No.61572266),浙江省自然科学基金(No.LY16F020003),宁波市自然科学基金(No.2017A610114)

    分类号: TP18;O157.5

    页码: 2050-2060

    总页数: 11

    文件大小: 2919K

    下载量: 139

    相关论文文献

    • [1].基于迭代随机森林算法的糖尿病预测[J]. 长春工业大学学报 2019(06)
    • [2].基于改进随机森林的城市河流水生态健康评价研究[J]. 海河水利 2019(06)
    • [3].基于随机森林癫痫患者脑电数据的分析研究[J]. 中国数字医学 2020(01)
    • [4].基于局部均值分解和迭代随机森林的脑电分类[J]. 吉林大学学报(信息科学版) 2020(01)
    • [5].网贷平台数据的随机森林预测模型实证分析[J]. 宜宾学院学报 2019(12)
    • [6].采用单类随机森林的异常检测方法及应用[J]. 西安交通大学学报 2020(02)
    • [7].随机森林数据情感挖掘方法分析[J]. 通讯世界 2020(01)
    • [8].运用最大熵模型和随机森林模型对东北红松分布的模拟[J]. 东北林业大学学报 2020(03)
    • [9].基于随机森林算法的城区土地覆盖分类研究[J]. 河北省科学院学报 2020(01)
    • [10].运用随机森林模型对北京市林分蓄积生长量的预测[J]. 东北林业大学学报 2020(05)
    • [11].融合人工鱼群和随机森林算法的膝关节接触力预测[J]. 中国医学物理学杂志 2020(04)
    • [12].结合特征选择和优化随机森林的无线网络数据丢失重建[J]. 上海电力大学学报 2020(03)
    • [13].基于随机森林算法的耕地质量定级指标体系研究[J]. 华南农业大学学报 2020(04)
    • [14].一种基于随机森林的组合分类算法设计与应用[J]. 电子设计工程 2020(16)
    • [15].基于随机森林算法的日光温室内气温预测模型研究[J]. 中国农学通报 2020(25)
    • [16].基于因子分析和迭代随机森林方法的学生成绩综合评价——以都匀市某高中为例[J]. 黔南民族师范学院学报 2020(04)
    • [17].基于随机森林模拟的辽宁省降水量空间分布研究[J]. 陕西水利 2020(09)
    • [18].随机森林模型在膝关节炎患者结构特征与症状定量分析中的应用(英文)[J]. 磁共振成像 2020(10)
    • [19].基于特征选择的极限随机森林算法研究[J]. 计算机应用研究 2020(09)
    • [20].随机森林回归分析方法在代谢组学批次效应移除中的应用[J]. 中国卫生统计 2020(05)
    • [21].一种面向非均衡分类的随机森林算法[J]. 计算机与现代化 2018(12)
    • [22].随机森林模型和决策树模型在肝硬化上消化道出血预后中的应用[J]. 中国卫生统计 2019(02)
    • [23].基于随机森林的债券违约分析[J]. 当代经济 2018(03)
    • [24].基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用 2018(10)
    • [25].随机森林在城市不透水面提取中的应用研究[J]. 云南师范大学学报(自然科学版) 2017(03)
    • [26].一种顺序响应的随机森林:变量预测和选择[J]. 小型微型计算机系统 2017(08)
    • [27].基于随机森林回归的军械器材需求预测[J]. 自动化应用 2017(09)
    • [28].流式大数据下随机森林方法及应用[J]. 西北工业大学学报 2015(06)
    • [29].面向高维数据的随机森林算法优化探讨[J]. 商 2016(04)
    • [30].深度随机森林在离网预测中的应用[J]. 计算机科学 2016(06)

    标签:;  ;  ;  ;  ;  

    基于Attention深度随机森林的社区演化事件预测
    下载Doc文档

    猜你喜欢