导读:本文包含了等离子体电子密度诊断论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:等离子体,密度,电子,发射光谱,激光,全息,马赫。
等离子体电子密度诊断论文文献综述
刘荣明,吴慎将,苏俊宏,徐均琪,王可瑄[1](2019)在《激光干涉法诊断等离子体的电子密度》一文中研究指出为研究等离子体中电子密度的分布规律与瞬态电子密度的量值,通过激光干涉法诊断等离子体的电子密度,使用马赫-曾德干涉系统获得含有电子密度参量的干涉图像,并进行干涉图像的预处理。采用傅里叶变换对干涉图像进行频域处理,基于波动光学理论与Abel逆变换方法获得包含电子密度的参量图。基于诊断理论拟合得到电子密度的轴向和径向二维分布图及其叁维分布。诊断结果表明:使用激光干涉法诊断方法可以获得高质量的时间分辨率干涉图像及理想的相位角信息;测得的电子密度最大值约为6×10~(21 )m~(-3)。该方法可以为等离子体电子密度的快速诊断提供理论和实验参考。(本文来源于《西安工业大学学报》期刊2019年05期)
张际波[2](2019)在《临近空间高速目标等离子体电子密度高精度诊断研究》一文中研究指出近些年随着航空航天技术的发展,临近空间的开发越来越受到重视,临近空间不仅是高超声速飞行器的飞行走廊,而且还是航天器往返太空的必经之地。在临近空间,飞行器飞行速度较高,由于粘性和激波的作用,飞行器表面附近的空气分子会因为剧烈的热运动电离,形成电离气体(等离子体),电离气体附着在飞行器周围,形成所谓的等离子体鞘套。等离子体鞘套中具有大量的粒子包括中性分子、带电自由粒子,其中带电自由粒子中包括自由离子和自由电子。自由电子对电磁的传播影响较大,对电磁波具有反射和散射作用,引发一系列电磁效应,使通信和探测信号产生畸变,导致信息系统特性发生改变,对高速飞行器的通信和探测造成严重影响。地面模拟是研究临近空间高速目标等离子体的有效方法,临近空间高速目标等离子体电磁科学实验装置,正是在这种背景下产生的。电磁科学实验装置主要研究电磁波与等离子体的相互作用机理;高速飞行器通信异常问题;等离子体包覆下可靠的雷达探测问题等。这些问题研究都需要可靠的电子密度数据。本文主要为电磁科学实验装置研制两种电子密度诊断系统:叁道HCN干涉仪和静电探针系统,其中静电探针系统又分为快动探针系统和探针阵列系统。干涉仪主要测量等离子体弦积分电子密度,快动探针测量电子密度的径向分布。第一章,简单介绍了电磁科学实验装置研制背景,电磁科学实验装置的研究目的、参数范围等。并介绍了HCN干涉仪和静电探针国内外研究现状。第二章,详细介绍了HCN干涉仪测量等离子体电子密度的物理基础,分析了中性分子和碰撞频率对干涉仪测量的影响。介绍了常见静电探针的原理,以及非理想状态下探针的修正理论。第叁章,主要介绍了叁道HCN干涉仪的研制,包括干涉仪波长的选择、干涉仪结构的选择、中频调制系统的选择及研制、光路设计、机械设计和探头选择等。第四章,介绍了静电探针的研制,主要包括探针支架的设计。由于探针支架放在电测科学实验装置内部,探针工作在高温流场中,因此,我们使用ANSYS软件对探针做了应力和热分析,结果表明我们设计是合理有效的。第五章主要是对HCN干涉仪和静电探针系统做了测试,首先使用wedge代替等离子体做了台面测试,测试结果与理论计算值比较发现两者符合一致。然后使用多凹腔组合式感应耦合等离子体测试HCN干涉仪和静电探针系统。两者测量结果相符。最后对全文做了总结,以及对未来做了展望。(本文来源于《中国科学技术大学》期刊2019-05-06)
周倩倩[3](2017)在《低气压低功率高电压放电等离子体的电子密度诊断》一文中研究指出本文利用朗缪尔探针对某种混合气体(主要成分为氩气)高压放电所产生等离子体的密度进行了诊断。实验结果表明:当气压为100-300Pa、高压输出功率为100W-800W时,电子密度最高可达2.66×10~(18)m~(-3);在相同气压下,电子密度随着高压电源输出功率的增大而明显增大;当电源输出功率不变时,随着气压的增大,电子密度先增大后减小。(本文来源于《第十八届全国等离子体科学技术会议摘要集》期刊2017-07-26)
王尚民,张家良,张天平,冯杰,郑茂繁[4](2016)在《μ-PPT等离子体电子密度氢光谱诊断技术》一文中研究指出为了能够表征推进剂烧蚀产物的有效加速度及推进剂利用率,需要更准确地测量等离子电推力器(PPT)内等离子体的基础状态参数(电子密度、电子温度),提出了基于光谱线Stark加宽分析,提高PPT放电通道内等离子体电子密度诊断精度的一种方法。针对来自于推进剂的C原子谱线,测量线型函数和半高全宽(FWHM),可以计算电子密度,但要求等离子体电子密度需足够高。当电子密度低于10~(16)cm~(-3),此方案的测量可靠性便显着降低。为此,提出了通过向放电空间引入微量含氢气体作为示踪剂,测量H原子谱线线型和半高全宽进而诊断电子密度的技术方案。相比于C原子谱线诊断方案,氢方案可以大幅度提高电子密度测量下限至10~(13)cm~(-3),因此能够显着改进电子密度测量准确性和可靠性。(本文来源于《中国空间科学技术》期刊2016年01期)
张金禾,周严东,刘汝兵,林麒[5](2015)在《低压汞灯等离子体电子密度分布光谱诊断研究》一文中研究指出对一种低压汞灯工作时内部等离子体密度进行光谱诊断研究,沿其轴向等分取5个测量点,在加载电压频率为50~100 k Hz范围内对各测量点进行光谱测量,利用谱线相对强度对灯管内等离子体电子温度和电子密度进行计算,研究其内部等离子体密度分布规律。研究结果表明,在实验条件下,低压汞灯沿轴向关于中间点对称位置的测量点电子密度值在同一数量级;随着电压加载频率增加,各测量点电子密度均呈现先增大后减小,最终稳定在同一数量级的趋势;在55~65 k Hz范围内,各测量点位置均出现密度峰值,达到1019/m-3,在65~90 k Hz频段内,电子密度值逐渐减小,大于90 k Hz后,各测量点电子密度均趋于一致,均在1016/m-3水平。研究结果给出了低压汞灯内的等离子体的电子密度分布规律,可为其应用提供参考。(本文来源于《机电技术》期刊2015年06期)
王琛[6](2015)在《激光烧蚀高Z材料等离子体电子密度诊断》一文中研究指出在惯性约束聚变(ICF)、高能量密度物理、激光等离子体相互作用、天体物理模拟等领域的研究中,高温高密度等离子体状态演化是重中之重的研究内容。目前的主要研究方法是计算机理论模拟,物理过程异常复杂,特别是激光烧蚀高Z材料产生的等离子体更加复杂,因此需要进行相关的实验来进行比对校验。(本文来源于《2015年版中国工程物理研究院科技年报(I)》期刊2015-12-01)
陈宗胜,林志丹,时家明,马丽芳[7](2015)在《用Langmuir探针法标定的发射光谱法诊断等离子体电子密度及分布》一文中研究指出电子密度是低温等离子体的重要参数之一,仅采用发射光谱或Langmuir探针一种诊断方法,很难测量出该参数及其分布。针对这一问题,提出了用Langmuir探针法标定的发射光谱法,用于诊断等离子体电子密度及其分布。通过对一定长度表面波等离子体源的实验测量,验证了该方法的可行性。对于电子温度变化不大的等离子体,利用本文提出的诊断方法,可以测量出其电子密度及其分布。提出的诊断方法为低温等离子体参数的实验诊断提供了一种新的途径。(本文来源于《真空科学与技术学报》期刊2015年06期)
雷岚,曹娜,曹亮,徐青,韩长材[8](2015)在《有限宽全息干涉技术对等离子体电子密度的诊断》一文中研究指出利用Nd:YAG激光器产生的1064 nm激光束(光斑直径为100μm,脉冲能量为60 m J,脉冲宽度为200 ps)聚焦击穿大气形成激光大气等离子体。采用全息干涉技术对激光击穿空气等离子体的电子密度分布进行了诊断,获得的无限宽条纹图直观反映了位移量的等位线,从有限宽条纹图获得了电子密度的分布,结果表明激光大气等离子体中各种离子和电子呈橄榄形分布,即沿激光束方向不对称,而垂直激光束方向对称分布,且最大电子密度为1018cm-3量级。(本文来源于《中国激光》期刊2015年01期)
孙成琪,高阳,杨德明,陈振宇[9](2014)在《大气下热喷涂等离子体电子密度的光谱诊断》一文中研究指出利用直流电弧放电装置产生了大气压下热喷涂等离子体,采用原子发射光谱法测量热喷涂等离子体射流中的辐射强度.通过Stark展宽法,使用ArΙ谱线在430 nm处的Δλ1/2(谱线的半宽高)对大气压力下热喷涂等离子体射流中电子密度进行计算,研究了不同氩气流量及不同输入功率对等离子体电子密度的影响;同时使用Saha方程计算氩等离子体的电离程度,研究气体流量和电流与氩等离子体电离程度的关系.结果表明,电子密度和电离程度随着等离子体喷枪输入功率的增加而增加,而随着气体流量增加时,电子密度略有增加而电离程度会减少.(本文来源于《焊接学报》期刊2014年04期)
谢会乔[10](2014)在《SUNIST等离子体电子温度与密度的原子发射光谱诊断》一文中研究指出光谱诊断是等离子体诊断的主要手段之一,因此对于光谱诊断方法本身的研究也就具有重要的意义。本论文围绕SUNIST球形托卡马克装置上光谱诊断的发展,开展了氦放电等离子体原子发射光谱诊断电子温度和密度的研究。在碰撞辐射模型发展上,本论文针对SUNIST参数范围的等离子体,对氦原子各能级的主要反应过程及杂质离子可能的影响进行了评估,列出了描述各能级粒子数反应速率的碰撞辐射模型方程;重点研究了原子反应速率系数不确定性至激发态粒子数密度计算误差的传递,从而可以在可接受的误差条件下确定模型中所需包含的激发态能级,在SUNIST参数范围下,包含至最高n壳层能级粒子时即给出可接受的结果;基于谱线强度比,进而为SUNIST建立了电子温度和密度的光谱诊断方法。在诊断系统建立和实验开展方面,通过论文工作,为SUNIST建立了光谱诊断系统,对系统进行了标定,实现了基于重复放电的原子发射谱线测量,给出了SUNIST上光谱诊断测量的电子温度和密度结果,通过与微波干涉仪等其他诊断结果的对比验证了谱线比法的可靠性。研究中还针对光谱诊断信号中的一些细节,如谱线比法得到的密度与微波干涉仪诊断得到密度的关系、谱线强度信号的涨落等,开展了初步的探索研究。本文研究中开展的创新性工作主要包括:1.明确给出了原子反应速率系数不确定性至激发态粒子数密度计算误差的传递函数。利用此传递函数可以对反应速率系数精度提出具体要求,或在碰撞辐射模型中使用的速率系数精度确定后,估算出激发态粒子数密度的计算误差。这种方法比常规的对速率系数进行扰动并重新求解速率方程的方法简洁直观,且物理意义明确,对碰撞辐射模型的建立及评估具有指导意义。2.发展了SUNIST氦等离子体参数范围下利用谱线比同时获得电子温度与密度的诊断方法。以此为基础,在SUNIST装置上建立起光谱诊断系统,并在实验中给出了可信的诊断结果。此方法也适用于其他装置中具有类似参数范围的等离子体的诊断(如其他包括芯部在内的小型托卡马克装置等离子体或大型装置的边界及偏滤器等离子体等)。3.论文观察到如谱线比法与微波干涉仪测量的弦平均电子密度的比例与电子密度峰化具有一定的关系、光谱信号与磁探针信号具有一致的涨落行为等趋势,为进一步丰富和深入光谱诊断研究提供了思路。(本文来源于《清华大学》期刊2014-04-01)
等离子体电子密度诊断论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
近些年随着航空航天技术的发展,临近空间的开发越来越受到重视,临近空间不仅是高超声速飞行器的飞行走廊,而且还是航天器往返太空的必经之地。在临近空间,飞行器飞行速度较高,由于粘性和激波的作用,飞行器表面附近的空气分子会因为剧烈的热运动电离,形成电离气体(等离子体),电离气体附着在飞行器周围,形成所谓的等离子体鞘套。等离子体鞘套中具有大量的粒子包括中性分子、带电自由粒子,其中带电自由粒子中包括自由离子和自由电子。自由电子对电磁的传播影响较大,对电磁波具有反射和散射作用,引发一系列电磁效应,使通信和探测信号产生畸变,导致信息系统特性发生改变,对高速飞行器的通信和探测造成严重影响。地面模拟是研究临近空间高速目标等离子体的有效方法,临近空间高速目标等离子体电磁科学实验装置,正是在这种背景下产生的。电磁科学实验装置主要研究电磁波与等离子体的相互作用机理;高速飞行器通信异常问题;等离子体包覆下可靠的雷达探测问题等。这些问题研究都需要可靠的电子密度数据。本文主要为电磁科学实验装置研制两种电子密度诊断系统:叁道HCN干涉仪和静电探针系统,其中静电探针系统又分为快动探针系统和探针阵列系统。干涉仪主要测量等离子体弦积分电子密度,快动探针测量电子密度的径向分布。第一章,简单介绍了电磁科学实验装置研制背景,电磁科学实验装置的研究目的、参数范围等。并介绍了HCN干涉仪和静电探针国内外研究现状。第二章,详细介绍了HCN干涉仪测量等离子体电子密度的物理基础,分析了中性分子和碰撞频率对干涉仪测量的影响。介绍了常见静电探针的原理,以及非理想状态下探针的修正理论。第叁章,主要介绍了叁道HCN干涉仪的研制,包括干涉仪波长的选择、干涉仪结构的选择、中频调制系统的选择及研制、光路设计、机械设计和探头选择等。第四章,介绍了静电探针的研制,主要包括探针支架的设计。由于探针支架放在电测科学实验装置内部,探针工作在高温流场中,因此,我们使用ANSYS软件对探针做了应力和热分析,结果表明我们设计是合理有效的。第五章主要是对HCN干涉仪和静电探针系统做了测试,首先使用wedge代替等离子体做了台面测试,测试结果与理论计算值比较发现两者符合一致。然后使用多凹腔组合式感应耦合等离子体测试HCN干涉仪和静电探针系统。两者测量结果相符。最后对全文做了总结,以及对未来做了展望。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
等离子体电子密度诊断论文参考文献
[1].刘荣明,吴慎将,苏俊宏,徐均琪,王可瑄.激光干涉法诊断等离子体的电子密度[J].西安工业大学学报.2019
[2].张际波.临近空间高速目标等离子体电子密度高精度诊断研究[D].中国科学技术大学.2019
[3].周倩倩.低气压低功率高电压放电等离子体的电子密度诊断[C].第十八届全国等离子体科学技术会议摘要集.2017
[4].王尚民,张家良,张天平,冯杰,郑茂繁.μ-PPT等离子体电子密度氢光谱诊断技术[J].中国空间科学技术.2016
[5].张金禾,周严东,刘汝兵,林麒.低压汞灯等离子体电子密度分布光谱诊断研究[J].机电技术.2015
[6].王琛.激光烧蚀高Z材料等离子体电子密度诊断[C].2015年版中国工程物理研究院科技年报(I).2015
[7].陈宗胜,林志丹,时家明,马丽芳.用Langmuir探针法标定的发射光谱法诊断等离子体电子密度及分布[J].真空科学与技术学报.2015
[8].雷岚,曹娜,曹亮,徐青,韩长材.有限宽全息干涉技术对等离子体电子密度的诊断[J].中国激光.2015
[9].孙成琪,高阳,杨德明,陈振宇.大气下热喷涂等离子体电子密度的光谱诊断[J].焊接学报.2014
[10].谢会乔.SUNIST等离子体电子温度与密度的原子发射光谱诊断[D].清华大学.2014