论文摘要
总结以往滑坡预测方法存在的诸多不足,针对滑坡监测位移-时间曲线特点,本文提出了一种基于时间序列的人工蜂群算法(ABC)与支持向量回归机(SVR)相结合的滑坡位移预测方法。以三峡库区白水河滑坡为例,通过对滑坡位移、降雨、库水位等因素的分析,研究影响滑坡位移变化的因素。用时间序列加法模型和移动平均法将滑坡位移分解为趋势项和周期项。以多项式最小二乘法拟合滑坡位移趋势项,用人工蜂群支持向量机模型对滑坡位移周期项进行训练和预测。通过灰色系统关联分析法计算多项因子与滑坡位移周期项之间的关联性。最终的滑坡总位移预测值为周期项预测值与趋势项预测值之和。与BP神经网络、PSO-SVR模型方法相比,该方法在滑坡位移预测中有更高的精度,在防灾减灾工作中有较好的推广应用前景。
论文目录
文章来源
类型: 期刊论文
作者: 杨帆,许强,范宣梅,叶微
关键词: 滑坡,位移预测,时间序列,人工蜂群算法,支持向量回归机
来源: 工程地质学报 2019年04期
年度: 2019
分类: 基础科学,工程科技Ⅱ辑,信息科技
专业: 地质学,工业通用技术及设备,自动化技术
单位: 地质灾害防治与地质环境保护国家重点实验室(成都理工大学),四川大学商学院
基金: 国家自然科学基金重大项目(41790445),国家创新研究群体科学基金(41521002)资助~~
分类号: P642.22;TP18
DOI: 10.13544/j.cnki.jeg.2017-256
页码: 880-889
总页数: 10
文件大小: 423K
下载量: 437
相关论文文献
- [1].基于非稳态时间序列的生理控制模型研究[J]. 系统工程理论与实践 2020(02)
- [2].基于多样化top-k shapelets转换的时间序列分类方法[J]. 计算机应用 2017(02)
- [3].时间序列趋势预测[J]. 现代计算机(专业版) 2017(02)
- [4].基于分型转折点的证券时间序列分段表示法[J]. 商 2016(31)
- [5].基于ARMA模型的股价预测及实证研究[J]. 智富时代 2017(02)
- [6].《漫长的告别》(年度资助摄影图书)[J]. 中国摄影 2017(04)
- [7].王嵬作品[J]. 当代油画 2017(07)
- [8].基于模糊时间序列的计算机信息粒构建研究[J]. 粘接 2020(10)
- [9].基于时间序列挖掘的合成旅装备维修保障能力预测[J]. 系统工程与电子技术 2020(04)
- [10].风速时间序列混沌判定方法比较研究[J]. 热能动力工程 2018(07)
- [11].土壤退化时间序列的构建及其在我国土壤退化研究中的意义[J]. 土壤 2015(06)
- [12].基于信息颗粒和模糊聚类的时间序列分割[J]. 模糊系统与数学 2015(01)
- [13].不确定时间序列的降维及相似性匹配[J]. 计算机科学与探索 2015(04)
- [14].时间序列的异常点诊断方法[J]. 中国卫生统计 2011(04)
- [15].基于独立成分分析的时间序列谱聚类方法[J]. 系统工程理论与实践 2011(10)
- [16].面向不确定时间序列的分类方法[J]. 计算机研究与发展 2011(S3)
- [17].一种基于频繁模式的时间序列分类框架[J]. 电子与信息学报 2010(02)
- [18].超启发式组合时间序列预报模型[J]. 福建电脑 2020(08)
- [19].基于深度学习的时间序列算法综述[J]. 信息技术与信息化 2019(01)
- [20].基于时间序列符号化模式表征的有向加权复杂网络[J]. 物理学报 2017(21)
- [21].基于互相关的二阶段时间序列聚类方法[J]. 计算机工程与应用 2016(19)
- [22].基于期货市场行为的时间序列切分及表示方法研究[J]. 中国管理信息化 2015(19)
- [23].基于形态特征的时间序列符号聚合近似方法[J]. 模式识别与人工智能 2011(05)
- [24].基于模糊时间序列对我国对外贸易中的进口水平的预测[J]. 统计与决策 2010(23)
- [25].模糊变量时间序列及其应用[J]. 辽宁工程技术大学学报(自然科学版) 2010(06)
- [26].时间序列流的分层段模型[J]. 小型微型计算机系统 2009(04)
- [27].发动机转速时间序列分形特征分析[J]. 机械科学与技术 2008(11)
- [28].基于HDAD的异构航空数据异常检测的研究[J]. 计算机仿真 2020(03)
- [29].重庆藕塘滑坡地下水位时间序列混沌性判别与预测[J]. 人民长江 2020(S1)
- [30].基于能量过滤的不确定时间序列数据清洗方法[J]. 智能计算机与应用 2019(04)