纵向部分线性变系数EV模型的估计

纵向部分线性变系数EV模型的估计

论文摘要

纵向数据是随着时间变化对个体进行重复观测而得到的一种相关性数据,广泛出现在诸多科学研究领域。在对个体进行观测时,测量误差不可避免,忽略测量误差往往会导致有偏估计。本文利用二次推断函数方法研究关于纵向数据的参数部分和非参数部分协变量均含有测量误差的部分线性变系数测量误差(errors-in-variables, EV)模型的估计问题。利用B样条逼近模型中的未知系数函数,构造关于回归参数和B样条系数的偏差修正的二次推断函数以处理个体内相关性和测量误差,得到回归参数和变系数的偏差修正的二次推断函数估计,然后证明了估计方法和结果的渐近性质。数值模拟和实例数据分析结果显示本文提出的方法具有一定的实用价值。

论文目录

  • 一、引言
  • 二、估计方法
  • 三、渐近结果
  • 四、数值研究
  •   (一)D(k)i的估计
  •   (二)数值模拟
  •   (三)实例数据分析
  • 五、主要结论及进一步的工作
  • 文章来源

    类型: 期刊论文

    作者: 赵明涛,许晓丽

    关键词: 纵向数据,部分线性变系数模型,二次推断函数

    来源: 统计研究 2019年10期

    年度: 2019

    分类: 社会科学Ⅱ辑,基础科学

    专业: 数学

    单位: 安徽财经大学

    基金: 国家社会科学基金青年项目“纵向数据下变系数测量误差模型的参数估计和变量选择方法研究”(15CTJ008)的阶段性成果

    分类号: O212.1

    DOI: 10.19343/j.cnki.11-1302/c.2019.10.009

    页码: 115-128

    总页数: 14

    文件大小: 269K

    下载量: 150

    相关论文文献

    • [1].几类求解变系数微分方程的方法[J]. 数学大世界(中旬) 2016(10)
    • [2].变系数二阶线性微分方程的求解探析[J]. 科教导刊(上旬刊) 2013(09)
    • [3].可积变系数二阶线性微分方程的解法[J]. 毕节学院学报 2010(04)
    • [4].变系数多项式型迭代方程的连续解[J]. 四川大学学报(自然科学版) 2010(05)
    • [5].纵向数据下变系数测量误差模型的渐近估计[J]. 应用数学 2020(02)
    • [6].基于时变系数与社会认知模拟的粒子群优化[J]. 计算机科学 2009(05)
    • [7].变系数二阶线性微分方程的一个新的可解类型[J]. 河南科学 2008(11)
    • [8].一类变系数波方程耦合系统整体解的性质[J]. 太原师范学院学报(自然科学版) 2020(01)
    • [9].变系数Bogoyavlensky-Konoplechenko方程的精确解[J]. 天津师范大学学报(自然科学版) 2011(04)
    • [10].一个新型的带自相容源的变系数(3+1)维KP方程[J]. 郑州大学学报(理学版) 2016(01)
    • [11].一类非线性变系数中立型微分方程振动的充分条件[J]. 高等数学研究 2012(04)
    • [12].一个广义变系数KP方程的Pfaffianization化(英文)[J]. 宁波大学学报(理工版) 2015(04)
    • [13].分离变量法在变系数(2+1)维方程求解中的应用[J]. 数学的实践与认识 2014(16)
    • [14].变系数线性微分方程组的求解[J]. 科技信息 2009(16)
    • [15].Lagrange插值恒等式在求变系数多项式取值范围中的应用[J]. 中学数学研究 2011(10)
    • [16].一个带自相容源的变系数(3+1)维KP方程[J]. 郑州大学学报(理学版) 2014(01)
    • [17].具有动态边界的变系数热弹性板的指数衰减性[J]. 山西大学学报(自然科学版) 2009(04)
    • [18].广义变系数Kuramoto-Sivashinsky方程的显式解[J]. 量子电子学报 2015(04)
    • [19].吉林省居民消费水平的变系数回归分析[J]. 佳木斯大学学报(自然科学版) 2017(04)
    • [20].变系数5阶Korteweg-de Vries方程的Lax对和自-Bcklund变换研究[J]. 江苏科技大学学报(自然科学版) 2013(03)
    • [21].二维变系数反应扩散方程的差分格式[J]. 内江师范学院学报 2010(02)
    • [22].变系数KdV方程的新约化[J]. 西北师范大学学报(自然科学版) 2010(03)
    • [23].变系数统计模型研究进展[J]. 科技信息 2014(12)
    • [24].变系数统计模型研究进展[J]. 科技视界 2014(07)
    • [25].一类新型变系数EV模型中参数β的估计[J]. 长沙大学学报 2010(05)
    • [26].变系数sine-Gordon方程的几种新解[J]. 内蒙古大学学报(自然科学版) 2016(04)
    • [27].基于变系数α-β-γ滤波的目标跟踪仿真研究[J]. 电子设计工程 2014(11)
    • [28].一类具有时变系数梯度源项的弱耦合反应-扩散方程组解的爆破分析[J]. 数学物理学报 2020(03)
    • [29].经济转型与技术创新空间变系数计量分析[J]. 统计与决策 2014(06)
    • [30].新型的带自相溶源的变系数KP方程及其它的Grammian解(英文)[J]. 数学季刊 2013(01)

    标签:;  ;  ;  

    纵向部分线性变系数EV模型的估计
    下载Doc文档

    猜你喜欢