道路裂缝是评价路面性能指数的一项重要指标,目前常用的检测方法有人工检测法和道路信息检测车检测法,这2种方法作业危险系数大、成本高,而消费级无人机在获取道路裂缝信息方面有着巨大的优势。本文针对现有道路裂缝检测方法存在训练样本大、试验周期长等不足,提出了一种基于无人机影像检测道路裂缝的方法。在对影像进行加权平均灰度化、直方图均衡化、中值滤波去噪等操作后,使用迭代二值化方法获得清晰的二值化影像,并采用积分投影的方式识别裂缝位置加以标记。结果表明,采用迭代二值化路面裂缝检测方法比直接采用基于灰度值特征对原始数据和去噪后数据进行检测效果有显著提升。在迭代次数为15次时,该方法对路面裂缝的识别正确率可达86.6%,误判率为13.4%,并且在复杂场景下有较高鲁棒性,提高了道路裂缝检测效率。
类型: 期刊论文
作者: 卢小平,张航,张冬梅,路泽忠
关键词: 无人机影像,裂缝检测,迭代二值化,自动识别
来源: 河南理工大学学报(自然科学版) 2019年06期
年度: 2019
分类: 工程科技Ⅰ辑,工程科技Ⅱ辑,信息科技
专业: 公路与水路运输,计算机软件及计算机应用
单位: 河南理工大学矿山空间信息技术国家测绘地理信息局重点实验室,黄河勘测规划设计院有限公司
基金: 国家重点研发计划项目(2016YFC0803103),河南省高校创新团队支持计划项目(14IRTSTHN026),河南省创新型科技创新团队支持计划项目(豫科人组[2014]2号)
分类号: TP391.41;U418.6
DOI: 10.16186/j.cnki.1673-9787.2019.6.8
页码: 55-59
总页数: 5
文件大小: 2645K
下载量: 362
本文来源: https://www.lunwen66.cn/article/bd8d4661e94918d6bc60e95d.html