论文摘要针对传统状态预测方法难以从伺服系统历史数据中有效提取特征的问题,提出一种基于深度学习的伺服系统状态预测算法。该算法利用长短时记忆网络LSTM(LongShort-Ter...
论文摘要在电力系统负荷预测中,使用传统的单任务学习方法未考虑多个地点的负荷间的潜在关系,忽视关联信息在多个地点间传递的可能会导致学习效果欠佳。针对这一问题,本文提出基于低秩表示...
论文摘要目的少数民族服装色彩及样式种类繁多等因素导致少数民族服装图像识别率较低。以云南少数民族服装为例,提出一种结合人体检测和多任务学习的少数民族服装识别方法。方法首先通过k-...
论文摘要生物医学领域的研究因与人类的健康状况密切相关而受到广泛关注。近年来,生物医学文献的数量呈高速增长的态势。海量的生物医学资源一方面成为生物医学专家的宝贵资源,另一方面,由...
论文摘要近年来,神经网络技术已经广泛应用到语义解析领域,主要对基于全监督的神经语义解析任务方法与研究现状进行分类。根据网络类型和利用训练数据方式的不同,前者将基于全监督的神经语...
论文摘要轻度认知障碍(MCI)是阿尔茨海默病(AD)的早期阶段,是治疗AD的最佳时期,因此对MCI的诊断非常重要。多模态数据可以全面分析疾病的状况,有利于疾病的准确诊断,但是现...
论文摘要近年来深度学习尤其是神经网络的发展,对语音识别这类复杂的模式分类问题提供了新的解决思路.为加强对我国方言语种的保护工作、提高方言语种识别的准确率以及丰富语音识别的前处理...
论文摘要对于数据流的处理,多任务多核学习已逐渐成为在线学习算法研究的热点,它在一定程度上可提高数据流预测的准确性。多核方法尽可能使用最少的核函数得到最好的实验效果,当数据量增大...