论文摘要针对停车位置检测的问题,采用基于霍夫变换检测停车线,分割每个停车区域的图像预处理,使用VGG目标检测模型对每个停车区域进行迁移学习,判别相融合的空闲车位检测方法,对露天...
论文摘要针对现有网络入侵检测系统对网络行为检测准确率较低、实时性较差、泛化性能较低的问题,利用深度学习具有良好分类性能及强泛化能力等优点,设计基于增益率算法和卷积神经网络算法的...
论文摘要基于卷积神经网络的行人检测器普遍采用图像识别网络,通常会引起多池化层导致小目标行人特征信息丢失、单一池化方法导致行人局部重要特征信息削弱甚至丢失等,针对以上问题,基于最...
论文摘要针对CT图像肺结节分类任务中分类精度低,假阳性高的问题,提出了一种加权融合多维度卷积神经网络的肺结节分类模型,该模型包含两个子模型:基于二维图像的多尺度密集卷积网络模型...
论文摘要情感分析是文本分析中一个重要的研究领域,基于新浪微博进行情感极性的分析研究,结合词向量模型、长短期记忆网络(longshort-termmemory,LSTM)以及注意...
论文摘要为使YOLOv2算法在保证检测速度的同时进一步提高目标检测的精确率,在YOLOv2模型的基础上提出RF-YOLOv2新模型。该模型先将KITTI数据集经过聚类,选出最适...
论文摘要大数据和高性能计算使得地质学可能突破种种主客观因素的限制,从传统的定性描述和不确定性作为特点转变为更全面的定量化发展阶段,即地质学更加注重通过挖掘复杂的多元地学数据间的...
论文摘要目的针对基于区域的语义分割方法在进行语义分割时容易缺失细节信息,造成图像语义分割结果粗糙、准确度低的问题,提出结合上下文特征与卷积神经网络(CNN)多层特征融合的语义分...
论文摘要深度估计是智能农机视觉系统实现三维场景重建和目标定位的关键。该文提出一种基于自监督学习的番茄植株图像深度估计网络模型,该模型直接应用双目图像作为输入来估计每个像素的深度...
论文摘要现有的联合知识表示学习模型使用实体描述作为辅助信息来提升表示效果,忽略了互联网中大量有价值的信息。为此,提出一种融合属性信息的知识表示学习方法(AIKR)。首先抓取实体...
论文摘要考虑到电影影评上下文信息带有固有的属性特征和语序不合理性等特点,提出CRCNN模型进行文本情感分析。为了减少噪音数据对分析的影响,对卷积神经网络进行改进,在输入层和卷积...
论文摘要以机器视觉技术为基础,利用卷积神经网络对樱桃缺陷进行检测与识别,并进行验证。结果表明,正常果樱桃识别准确率为99.25%,缺陷果樱桃识别准确率为97.99%,识别速度为...
论文摘要基于BP算法的卷积神经网络应用于图像识别领域,它有自动学习特征,比传统的图像识别方法的准确率更高。介绍了基于卷积神经网络的花朵品种的识别,构建CNN神经网络模型,运用B...
论文摘要植物属性文本的命名实体识别对林业领域的信息抽取和知识图谱的构建起着重要的作用,针对该问题,提出了一种基于双向长短时记忆网络(BiLSTM)、卷积神经网络(CNN)和条件...
论文摘要针对卷积神经网络在行人识别过程中错误率较高的问题,提出了一种基于深度胶囊模型的行人再识别方法.首先利用标准卷积层学习区分度较高的特征;然后将不同卷积层中的若干特征划分为...
论文摘要图像是一种用来传达情感的重要工具,人类的情感会因不同的视觉刺激而异。采用了一种基于小数据集的数据扩充方式,并将图像的手工提取的低级特征(颜色特征、纹理特征)和网络自动提...
论文摘要可见光图像能够充分反映场景的细节信息,红外图像能够反映目标的热度信息,利用两者的互补信息进行融合,可以得到具有目标信息和场景细节的图像.本文提出一种基于卷积自编码融合网...
论文摘要为了解决目前利用CNN算法进行手势识别的精度不高的问题,提出一种新的算法。首先对识别的手势图片进行二值化处理,滤除手势的背景,凸显手势在图像中的权重,背景对手势识别影响...
论文摘要为实现织物图像的快速自动识别与检索,从织物图像浅层视觉特征提取、深度语义特征学习以及检索模型构建3个方面综述了该领域的研究进展,分析了现有研究中存在的问题。发现织物图像...
论文摘要主要研究了针对目标区域的基于卷积神经网络的变化检测方法,对比了两种卷积神经网络的方法,包括使用以VGG16为网络结构,将图像裁剪为16×16的图块,以这些图块为单元,为...