论文摘要为了提高海上无人艇的舰船目标检测精度和速率,本文基于深度学习方法,利用卷积神经网络、区域建议网络及FastR-CNN检测框架构建了舰船检测系统。该系统通过共享的卷积神经...
论文摘要针对高分辨率遥感图像检索中手工特征难以准确描述图像的问题,提出聚合卷积神经网络(convolutionalneuralnetwork,CNN)特征的方法来改进特征表达。...
论文摘要针对城市交通信号控制中如何有效利用相关信息优化交通控制并保证控制算法的适应性和鲁棒性的问题,提出一种基于深度强化学习的交通信号控制算法,利用深度学习网络构造一个智能体来...
论文摘要现有的滚动轴承故障诊断算法依赖于人工特征提取,当负载发生变化或故障样本数较少时,诊断效果较差。针对该问题,文中建立了基于卷积神经网络的智能故障诊断算法。首先,将原始振动...
论文摘要针对传统智能诊断方法依靠专家知识和人工提取数据特征工作量大的问题,结合深度学习方法在特征提取和处理大数据方面的优势,研究了一种基于卷积神经网络和振动信号峭度指标的滚动轴...
论文摘要提出了一种基于深度学习的电力线信道传输特性识别方法,通过人工智能方法完成对电力线信道传输特性的识别。传统的信道传输特性识别一般采用信道估计方法,该方法在噪声较大时估计效...
论文摘要兼顾时、空相关性的风速预测意义重大也极具挑战。围绕多位置、多步风速预测问题展开研究,从风速时空序列的本质出发,提出了一种"先提取空间特征,后捕捉时间依赖&qu...
论文摘要为了实现子弹外观缺陷的自动检测,解决传统机器视觉方法在缺陷检测方面手工设计目标特征耗时和泛化能力差的问题,针对子弹外观缺陷数据集,采用K-means++算法改进锚框的生...
论文摘要常规机械故障诊断方法需要信号预处理、特征提取、特征选择、模式识别等多个步骤,过程复杂,通用性差。卷积神经网络(ConvolutionalNeuralNetwork,CN...
论文摘要为提升传统算法对高分辨率遥感图像中地物目标的检测效果,将深度学习目标检测框架快速区域卷积神经网络(fasterregionswithconvolutionalneura...
论文摘要目的针对基于内容的图像检索存在低层视觉特征与用户对图像理解的高层语义不一致、图像检索的精度较低以及传统的分类方法准确度低等问题,提出一种基于卷积神经网络和相关反馈支持向...
论文摘要随着村镇经济建设发展,生活垃圾和工业固体废弃物造成的污染问题日益突出,已经成为制约新农村建设发展和生态文明建设的关键问题,而目前针对乡镇非正规固体废弃物的调查与统计主要...
论文摘要高分辨率遥感影像的目标检测与识别,是高分对地观测系统中影像信息自动提取及分析理解的重要内容。针对传统影像目标检测与识别算法中人工设计特征稳健性与普适性差的问题,本文提出...
论文摘要状态监测和故障诊断对于维护系统性能和保证运行安全具有重要意义.针对传统智能识别方法需要复杂的特征提取过程和大量的诊断经验等问题,结合振动信号自身的一维性的特点,提出一种...
论文摘要车辆识别方法计算量大,提取的特征复杂,且传统神经网络利用端层特征进行分类导致特征不全面,为此提出了一种结合卷积神经网络(CNN)多层特征和支持向量机(SVM)的车辆识别...
论文摘要舰船目标检测是现代海上智能系统的重要组成部分,构建快速准确识别各类舰船目标系统对监视海运交通,维护海洋权益,提高海防预警能力具有重要作用。本文将现有的深度学习通用目标检...
论文摘要交通流量序列具有不平稳性、周期性、易受节假日等因素影响的特点,因此交通流量预测是一项困难的任务。针对交通流量序列的预测问题,设计了一种基于深度学习的交通流量预测模型。模...
论文摘要针对利用彩色图像进行车辆检测时会受到路面阴影、车辆反光和光线不足等复杂情况影响的问题,提出一种基于卷积神经网络并融合彩色与深度图像的车辆检测算法。设计单通道RG-D融合...
论文摘要假数据注入攻击可以篡改由数据采集与监控(SCADA)系统采集到的量测信息,影响电网的重要决策,从而对电网状态估计造成安全威胁。针对智能电网状态估计,研究了交流模型下假数...
论文摘要针对传统智能诊断方法过分依赖于信号处理和专家经验提取故障特征以及模型泛化能力差的问题,基于深度学习理论,提出将卷积神经网络算法结合SVM分类器搭建适于滚动轴承故障诊断的...