论文摘要作为一种经典迁移学习算法,迁移成分分析(TCA)已在多种不同的领域得以应用。然而,由于涉及大的矩阵运算,TCA尚无法直接用于对遥感影像进行分类。该研究利用影像同质区信息...
论文摘要针对滚动轴承诊断中难以获得大量故障样本的问题,拟结合迁移学习的思想,提出了一种基于迁移学习的多变量预测模型(TVPMCD)方法。该方法首先采用已知样本库建立基础变量预测...
论文摘要采用基于Inceptionv3模型的迁移学习方法对风机叶片裂缝进行自动检测,分别设计了基于反向传播(BP)神经网络和超限学习机(ELM)的全连接层实现叶片状态分类。实验...
论文摘要针对遥感图像飞机目标检测问题,探讨了深度卷积神经网络模型FasterR-CNN在遥感图像中对飞机目标检测的应用。针对训练样本不足的问题,构建了Airplane-2018...
论文摘要铁路检测、监测领域产生海量的图像数据,基于图像场景进行分类对图像后续分析、管理具有重要价值.本文提出一种结合深度卷积神经神经网络DCNN(DeepConvolution...
论文摘要为提高航天软件测试的效率和质量,针对同公司航天软件数量少、研制周期长的特点,提出了一种跨公司航天软件缺陷预测方法。从航天软件背景信息复杂、规模大、功能独立等特征出发,提...
论文摘要针对目前绝缘子运维过程存在着规程过于繁杂,过于依赖运维人员的人工识别等问题,文中提出了一种绝缘子状态评价方法,该方法采用历史绝缘子缺陷图像作为训练样本,通过迁移学习在小...
论文摘要在电力系统负荷预测中,使用传统的单任务学习方法未考虑多个地点的负荷间的潜在关系,忽视关联信息在多个地点间传递的可能会导致学习效果欠佳。针对这一问题,本文提出基于低秩表示...
论文摘要针对轴承故障样本少导致识别精度低的问题,提出一种基于无监督迁移成分分析(unsupervisedtransfercomponentanalysis,UTCA)和深度信念...
论文摘要随着电力行业的不断发展,高压电缆的铺排以及地下电缆隧道的建设与维护逐渐成为该领域中的热点问题之一。将迁移学习的核心思想与经典的卷积神经网络(LeNet5)相结合,提出了...
论文摘要本文针对飞机目标,提出了基于多域网络(MDNet)的改进网络用于飞机跟踪的快速深度学习(FDLAT)跟踪网络,使用迁移学习弥补目标跟踪的小样本集缺陷。卷积层作为特征提取...
论文摘要随着可再生能源产业不断壮大,可再生能源消纳问题日益凸显。为了充分挖掘源–网–荷–储联合运行的灵活性调节能力,提高可再生能源的消纳水平,该文提出一种基于灵活性平衡理论的可...
论文摘要针对高光谱图像分类中,样本空间特征利用不足的问题。将深层残差网络作为特征提取器运用到高光谱图像分类中,利用深层残差网络更深的网络结构,挖掘样本邻域空间中的深层特征,实验...
论文摘要电力行业是国家发展的重要基础能源产业,也是国家经济的第一基础产业,控制着国家的命脉。随着电网规模不断扩大,运行条件日益复杂,电网数据采集范围和频率不断增加,如何合理运用...
论文摘要本文以结合深度学习的遥感影像特征提取和不充足样本下地物识别与分类作为出发点,对2017—2019年用于遥感图像处理中小样本训练的深度学习方法进行归类总结,介绍如何结合深...
论文摘要针对色织物疵点检测准确率较低的问题,提出一种基于卷积神经网络的疵点识别方法。首先对织物图像进行预处理,然后将无疵点织物和5类疵点织物图像样本输入到残差网络模型进行训练和...
论文摘要目的为了提高果蔬农产品识别的准确性,使果蔬农产品分类实现自动化。方法利用深度卷积神经网路强大的特征学习和特征表达能力,来自动学习果蔬种类特征,提出基于位置的柔性注意力算...
论文摘要自然界中已发现的昆虫有上百万种,广泛分布于世界各处,是已知数量最多的动物群体。每一种昆虫的个体数量庞大,容易饲养且繁殖速度快,对于科学研究人员来说是良好的实验资源。围绕...
论文摘要本文提出了一种用于水下目标识别的脑听觉感知迁移学习方法,该方法通过受脑听觉感知启发的深度卷积网络(AuditorysysteminspiredDeepConvoluti...
论文摘要高空间分辨率遥感影像(简称高分影像)能够快速记录地物几何、纹理、形状、色彩等信息,是国土调查、城市规划、国防安全等领域重要的基础性数据,而地物分类是实现高分影像数据价值...