论文摘要在电能质量评价中,需要结合大数据分析方法进行电能质量的特征分析和数据挖掘,采用自适应融合方法进行电能质量大数据评价,提高电能评价的信息管理能力,提出一种基于S变换和SV...
论文摘要针对电力电子设备的广泛接入,谐波污染更加复杂、影响更大等问题,引入了长短期记忆网络(longshort-termmemory,LSTM),提出LSTM与多标签分类算法融...
论文摘要针对大型转子试验台轴心轨迹提纯的问题,提出了采用匹配追踪(MatchingPursuit,MP)算法提取特征频率合成轴心轨迹的新方法。算法中信号的稀疏分解采用MP算法实...
论文摘要文中设计了一款智能家居系统,主要介绍了语音识别技术的相关基础原理以及流程。详细分析了一段语音信号从采集到预处理,提取特征值后与语音库中的声学模型比对得出识别结果的过程及...
论文摘要为了有效提取高压断路器振动信号的特征,提出了一种基于变分模态分解(VMD)和多尺度熵(MSE)的特征提取方法.首先,利用VMD对断路器的振动信号进行分解,得到一系列的固...
论文摘要滚动轴承的故障定位以及性能衰减程度的诊断能够有效地降低设备停机率。针对故障轴承的非稳态振动信号易受噪声干扰、故障识别难度大等问题,提出了一种关于机械滚动轴承故障信号的诊...
论文摘要深度学习中用于训练的高光谱图像(HSI)数据十分有限,因此较深的网络不利于空谱特征的提取.为了缓解该问题,文中提出3D多尺度特征融合残差网络,利用深度学习和多尺度特征融...
论文摘要针对无刷直流电机(BLDCM)故障诊断问题,提出一种基于主成分分析(PCA)和支持向量机(SVM)的故障诊断方法。首先对故障时刻无刷直流电机三相电流进行分析,提取故障特...
论文摘要在电机故障诊断研究领域,基于人工智能技术和现代信号处理方法相结合的故障诊断技术正逐步成为目前的研究热点。一般的模式识别方法往往对信号的数据采集和处理有较高要求,且往往因...
论文摘要为了对高压断路器操作机构的工作状态进行较准确的评估,提高高压断路器机构的运行稳定性,提出了一种基于振动信号与电流信号结合的高压断路器信号特征提取和分类方法。首先通过对高...
论文摘要城市内涝风险的精细化管理和防洪排涝市政工程的科学设计,需要对当地降雨的时空分布特征有深入的了解。而传统以单站雨型代表整个区域降雨特征的分析方法,不能满足这一要求。本文尝...
论文摘要随着人工智能技术的不断发展,利用深度学习进行车辆识别已经成为智能交通领域的热点。以更快速区域卷积神经网络(FasterR-CNN)模型为基础,利用BIT-Vehicle...
论文摘要轴承动力学行为具有非线性的特点,导致其振动信号特征与运行状态之间存在较强的非线性关系;且振动信号的特征提取与选择往往需要大量的先验知识,导致特征的设计难以准确反映不同的...
论文摘要针对传统自编码网络在特征自动提取过程中仅以重构误差最小为目的而导致的分类信息模糊问题,提出了一种区分自编码网络。该网络在自编码网络的隐层连接一个全连接层,加上Softm...
论文摘要鉴于在复杂工况和强背景噪声环境下,滚动轴承的非线性非平稳信号的特征提取非常困难,导致早期故障难以诊断,提出了一种基于局部特征尺度分解(LCD)和最大相关峭度解卷积(MC...
论文摘要针对如何提高轴承故障诊断的准确率和算法训练的效率问题,提出了一种深度信念网络(DBN)与粒子群优化支持向量机(PSO-SVM)的滚动轴承故障诊断方法。首先,求出信号的时...
论文摘要针对单一的分类器用于旋转机械故障诊断时存在准确率不高的问题,提出一种基于随机森林算法的旋转机械齿轮组故障诊断方法。该方法利用随机森林多分类器组合决策树的思想,通过多分类...
论文摘要定位技术的飞速发展催生了时空轨迹大数据,轨迹数据中往往存在着明显偏离轨迹的异常点。检测出轨迹中的异常点对提高数据质量和后续轨迹数据挖掘精度至关重要。该文提出了一种基于双...
论文摘要局部放电检测对识别电力电缆绝缘缺陷具有重要意义,其中提取有效的特征参量为其研究重点。该文提出一种基于二维Littlewood-Paley经验小波变换(2D-LPEWT)...
论文摘要状态监测和故障诊断对于维护系统性能和保证运行安全具有重要意义.针对传统智能识别方法需要复杂的特征提取过程和大量的诊断经验等问题,结合振动信号自身的一维性的特点,提出一种...